Advertisements
Advertisements
प्रश्न
Integrate the following w.r.t.x : `(1)/(xsin^2(logx)`
उत्तर
Let I = `int (1)/(xsin^2(logx))*dx`
Put log x = t
∴ `(1)/x*dx` = dt
∴ I = `int (1)/sin^2t*dt`
= `int "cosec"^2tdt`
= – cot t + c
= – cot (log x) + c.
APPEARS IN
संबंधित प्रश्न
Prove that:
`int sqrt(x^2 - a^2)dx = x/2sqrt(x^2 - a^2) - a^2/2log|x + sqrt(x^2 - a^2)| + c`
If `int_(-pi/2)^(pi/2)sin^4x/(sin^4x+cos^4x)dx`, then the value of I is:
(A) 0
(B) π
(C) π/2
(D) π/4
Integrate the function in x log 2x.
Integrate the function in x cos-1 x.
Integrate the function in `(x cos^(-1) x)/sqrt(1-x^2)`.
Integrate the function in `(xe^x)/(1+x)^2`.
Integrate the function in `((x- 3)e^x)/(x - 1)^3`.
Integrate the function in e2x sin x.
Integrate the function in `sin^(-1) ((2x)/(1+x^2))`.
Evaluate the following : `int x^3.logx.dx`
Evaluate the following : `int e^(2x).cos 3x.dx`
Evaluate the following : `int log(logx)/x.dx`
Evaluate the following : `int(sin(logx)^2)/x.log.x.dx`
Integrate the following functions w.r.t. x : `e^(2x).sin3x`
Integrate the following functions w.r.t. x : `(x + 1) sqrt(2x^2 + 3)`
Integrate the following functions w.r.t. x : `((1 + sin x)/(1 + cos x)).e^x`
Choose the correct options from the given alternatives :
`int (x- sinx)/(1 - cosx)*dx` =
Choose the correct options from the given alternatives :
`int cos -(3)/(7)x*sin -(11)/(7)x*dx` =
Integrate the following with respect to the respective variable : `(3 - 2sinx)/(cos^2x)`
Integrate the following w.r.t.x : `sqrt(x)sec(x^(3/2))*tan(x^(3/2))`
Integrate the following w.r.t.x : `log (1 + cosx) - xtan(x/2)`
Integrate the following w.r.t.x : log (log x)+(log x)–2
Integrate the following w.r.t.x : `(1)/(x^3 sqrt(x^2 - 1)`
Integrate the following w.r.t.x : log (x2 + 1)
Integrate the following w.r.t.x : sec4x cosec2x
Evaluate the following.
`int "e"^"x" (1/"x" - 1/"x"^2)`dx
Evaluate the following.
`int "e"^"x" "x - 1"/("x + 1")^3` dx
Evaluate: `int "dx"/sqrt(4"x"^2 - 5)`
Evaluate: `int "dx"/("x"[(log "x")^2 + 4 log "x" - 1])`
Evaluate: `int "dx"/(5 - 16"x"^2)`
`int (sin(x - "a"))/(cos (x + "b")) "d"x`
`int ("d"x)/(x - x^2)` = ______
Evaluate `int 1/(x(x - 1)) "d"x`
Evaluate `int (2x + 1)/((x + 1)(x - 2)) "d"x`
`int logx/(1 + logx)^2 "d"x`
`int 1/sqrt(x^2 - 8x - 20) "d"x`
`int log x * [log ("e"x)]^-2` dx = ?
`int "e"^x int [(2 - sin 2x)/(1 - cos 2x)]`dx = ______.
Evaluate the following:
`int (sin^-1 x)/((1 - x)^(3/2)) "d"x`
Evaluate the following:
`int ((cos 5x + cos 4x))/(1 - 2 cos 3x) "d"x`
Evaluate the following:
`int_0^pi x log sin x "d"x`
`int "dx"/(sin(x - "a")sin(x - "b"))` is equal to ______.
The value of `int_0^(pi/2) log ((4 + 3 sin x)/(4 + 3 cos x)) dx` is
`int 1/sqrt(x^2 - a^2)dx` = ______.
`int e^x [(2 + sin 2x)/(1 + cos 2x)]dx` = ______.
`int_0^1 x tan^-1 x dx` = ______.
Find `int (sin^-1x)/(1 - x^2)^(3//2) dx`.
`int(1-x)^-2 dx` = ______
Solution of the equation `xdy/dx=y log y` is ______
Evaluate `int(3x-2)/((x+1)^2(x+3)) dx`
Evaluate `int(1 + x + (x^2)/(2!))dx`
Evaluate the following.
`int (x^3)/(sqrt(1 + x^4))dx`
Evaluate:
`inte^x sinx dx`
Evaluate:
`int (logx)^2 dx`
`int (sin^-1 sqrt(x) + cos^-1 sqrt(x))dx` = ______.
The value of `int e^x((1 + sinx)/(1 + cosx))dx` is ______.
Evaluate:
`int (sin(x - a))/(sin(x + a))dx`
If u and v are two differentiable functions of x, then prove that `intu*v*dx = u*intv dx - int(d/dx u)(intv dx)dx`. Hence evaluate: `intx cos x dx`
Evaluate the following.
`intx^3/sqrt(1+x^4)dx`
Evaluate the following.
`intx^3/sqrt(1+x^4) dx`
Evaluate the following.
`intx^3e^(x^2) dx`
Evaluate `int (1 + x + x^2/(2!))dx`
Evaluate the following.
`intx^3/sqrt(1+x^4)`dx
The value of `inta^x.e^x dx` equals
Evaluate the following.
`intx^3/(sqrt(1 + x^4))dx`
Evaluate.
`int(5x^2 - 6x + 3)/(2x - 3) dx`