Advertisements
Advertisements
प्रश्न
Integrate the following functions w.r.t. x : `e^(2x).sin3x`
उत्तर
Let I = `int e^(2x).sin3x`
I = ` int sin 3x . e^(2x) dx`
I = `sin3x . int e^(2x) dx - int[d/dx (sin3x) int e^(2x)dx]dx`
I = `sin3x . e^(2x)/2 - int 3cos3x . e^(2x)/2 dx`
I = `1/2 sin3x.e^(2x) - 3/2 int cos3x . e^(2x)dx`
I = `1/2sin3x.e^(2x) - 3/2 intcos3x inte^(2x)dx - int [d/dx cos3x . int e^(2x)dx]dx`
I = `1/2 sin3x . e^(2x) - 3/2 cos3x . e^(2x)/2 + 3/2 int -sin3x . x3 . e^(2x)/2 dx`
I = `1/2 sin3x . e^(2x) - 3/4 cos3x . e^(2x) - 9/4 [int sin3x . e^(2x) dx]`
I = `1/2 sin3x . e^(2x) - 3/4 . cos3x . e^(2x) - 9/4 "I" + "c"_1`
`"I" + 9/4"I" = 1/2 sin3x . e^(2x) - 3/4 cos3x . e^(2x) + "c"_1`
`13/4 "I" = 1/2 e^(2x) [sin3x - 3/2 cos3x] + "c"_1`
I = `4/13 xx 1/2 e^(2x) [sin3x . 3/2 cos3x] + 4/13 "c"_1 ...[at 4/13 "c"_1 = "c"]`
I = `1/13 e^(2x) [2 sin3x - 3 cos3x] + "c"`
APPEARS IN
संबंधित प्रश्न
Integrate the function in x sin x.
Integrate the function in x sin 3x.
Integrate the function in x log 2x.
Integrate the function in x cos-1 x.
Integrate the function in (sin-1x)2.
Integrate the function in tan-1 x.
Integrate the function in (x2 + 1) log x.
`intx^2 e^(x^3) dx` equals:
`int e^x sec x (1 + tan x) dx` equals:
Evaluate the following : `int x^2tan^-1x.dx`
Evaluate the following : `int x^3.tan^-1x.dx`
Evaluate the following : `int e^(2x).cos 3x.dx`
Evaluate the following : `int x^2*cos^-1 x*dx`
Evaluate the following : `int cos sqrt(x).dx`
Integrate the following functions w.r.t. x : `sqrt(4^x(4^x + 4))`
Integrate the following functions w.r.t. x : `sec^2x.sqrt(tan^2x + tan x - 7)`
Integrate the following functions w.r.t. x : `sqrt(x^2 + 2x + 5)`
Integrate the following functions w.r.t. x : `((1 + sin x)/(1 + cos x)).e^x`
Integrate the following functions w.r.t. x : `e^x/x [x (logx)^2 + 2 (logx)]`
Integrate the following functions w.r.t.x:
`e^(5x).[(5x.logx + 1)/x]`
Integrate the following functions w.r.t. x : `e^(sin^-1x)*[(x + sqrt(1 - x^2))/sqrt(1 - x^2)]`
Integrate the following functions w.r.t. x : `log(1 + x)^((1 + x)`
If f(x) = `sin^-1x/sqrt(1 - x^2), "g"(x) = e^(sin^-1x)`, then `int f(x)*"g"(x)*dx` = ______.
Integrate the following with respect to the respective variable : cos 3x cos 2x cos x
Integrate the following w.r.t.x : log (x2 + 1)
Integrate the following w.r.t.x : e2x sin x cos x
Solve the following differential equation.
(x2 − yx2 ) dy + (y2 + xy2) dx = 0
Evaluate: Find the primitive of `1/(1 + "e"^"x")`
Evaluate: `int "dx"/sqrt(4"x"^2 - 5)`
Evaluate: `int "dx"/("9x"^2 - 25)`
Evaluate: `int e^x/sqrt(e^(2x) + 4e^x + 13)` dx
Evaluate: `int "dx"/(25"x" - "x"(log "x")^2)`
`int (sinx)/(1 + sin x) "d"x`
`int 1/sqrt(2x^2 - 5) "d"x`
`int ["cosec"(logx)][1 - cot(logx)] "d"x`
`int sqrt(tanx) + sqrt(cotx) "d"x`
Choose the correct alternative:
`intx^(2)3^(x^3) "d"x` =
Choose the correct alternative:
`int ("d"x)/((x - 8)(x + 7))` =
`int(x + 1/x)^3 dx` = ______.
Evaluate `int 1/(x log x) "d"x`
Evaluate `int 1/(4x^2 - 1) "d"x`
Evaluate `int (2x + 1)/((x + 1)(x - 2)) "d"x`
`int "e"^x x/(x + 1)^2 "d"x`
`int [(log x - 1)/(1 + (log x)^2)]^2`dx = ?
∫ log x · (log x + 2) dx = ?
`int "e"^x int [(2 - sin 2x)/(1 - cos 2x)]`dx = ______.
Evaluate the following:
`int_0^1 x log(1 + 2x) "d"x`
Evaluate the following:
`int_0^pi x log sin x "d"x`
State whether the following statement is true or false.
If `int (4e^x - 25)/(2e^x - 5)` dx = Ax – 3 log |2ex – 5| + c, where c is the constant of integration, then A = 5.
`int x/((x + 2)(x + 3)) dx` = ______ + `int 3/(x + 3) dx`
Find: `int e^x.sin2xdx`
If `π/2` < x < π, then `intxsqrt((1 + cos2x)/2)dx` = ______.
If `int (f(x))/(log(sin x))dx` = log[log sin x] + c, then f(x) is equal to ______.
Evaluate :
`int(4x - 6)/(x^2 - 3x + 5)^(3/2) dx`
`int(1-x)^-2 dx` = ______
`int(3x^2)/sqrt(1+x^3) dx = sqrt(1+x^3)+c`
`inte^(xloga).e^x dx` is ______
Evaluate:
`intcos^-1(sqrt(x))dx`
Evaluate:
`int e^(logcosx)dx`
If u and v are two differentiable functions of x, then prove that `intu*v*dx = u*intv dx - int(d/dx u)(intv dx)dx`. Hence evaluate: `intx cos x dx`
Complete the following activity:
`int_0^2 dx/(4 + x - x^2) `
= `int_0^2 dx/(-x^2 + square + square)`
= `int_0^2 dx/(-x^2 + x + 1/4 - square + 4)`
= `int_0^2 dx/ ((x- 1/2)^2 - (square)^2)`
= `1/sqrt17 log((20 + 4sqrt17)/(20 - 4sqrt17))`
Evaluate the following.
`intx^3 e^(x^2) dx`
Evaluate `int (1 + x + x^2/(2!))dx`
If ∫(cot x – cosec2 x)ex dx = ex f(x) + c then f(x) will be ______.
Evaluate the following.
`intx^3/sqrt(1+x^4)`dx
Evaluate the following.
`intx^2e^(4x)dx`
Evaluate the following.
`intx^3 e^(x^2)dx`
Evaluate the following.
`intx^3/(sqrt(1 + x^4))dx`
Evaluate.
`int(5x^2 - 6x + 3)/(2x - 3) dx`