मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

Integrate the following functions w.r.t. x : e2x.sin3x - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Integrate the following functions w.r.t. x : `e^(2x).sin3x`

बेरीज

उत्तर

Let I = `int e^(2x).sin3x`

I = ` int sin 3x . e^(2x) dx`

I = `sin3x . int e^(2x) dx - int[d/dx (sin3x) int e^(2x)dx]dx`

I = `sin3x . e^(2x)/2 - int 3cos3x . e^(2x)/2 dx`

I = `1/2 sin3x.e^(2x) - 3/2 int cos3x . e^(2x)dx`

I = `1/2sin3x.e^(2x) - 3/2 intcos3x inte^(2x)dx - int [d/dx cos3x . int e^(2x)dx]dx`

I = `1/2 sin3x . e^(2x) - 3/2 cos3x . e^(2x)/2 + 3/2 int -sin3x . x3 . e^(2x)/2 dx` 

I = `1/2 sin3x . e^(2x) - 3/4 cos3x . e^(2x) - 9/4 [int sin3x . e^(2x) dx]`

I = `1/2 sin3x . e^(2x) - 3/4 . cos3x . e^(2x) - 9/4 "I" + "c"_1`

`"I" + 9/4"I" = 1/2 sin3x . e^(2x) - 3/4 cos3x . e^(2x) + "c"_1`

`13/4 "I" = 1/2 e^(2x) [sin3x - 3/2 cos3x] + "c"_1`

I = `4/13 xx 1/2 e^(2x) [sin3x . 3/2 cos3x] + 4/13 "c"_1    ...[at  4/13 "c"_1 = "c"]`

I = `1/13 e^(2x) [2 sin3x - 3 cos3x] + "c"`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: Indefinite Integration - Exercise 3.3 [पृष्ठ १३८]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
पाठ 3 Indefinite Integration
Exercise 3.3 | Q 2.01 | पृष्ठ १३८

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Integrate the function in x sin x.


Integrate the function in x sin 3x.


Integrate the function in x log 2x.


Integrate the function in x cos-1 x.


Integrate the function in (sin-1x)2.


Integrate the function in tan-1 x.


Integrate the function in (x2 + 1) log x.


`intx^2 e^(x^3) dx` equals: 


`int e^x sec x (1 +   tan x) dx` equals:


Evaluate the following : `int x^2tan^-1x.dx`


Evaluate the following : `int x^3.tan^-1x.dx`


Evaluate the following : `int e^(2x).cos 3x.dx`


Evaluate the following : `int x^2*cos^-1 x*dx`


Evaluate the following : `int cos sqrt(x).dx`


Integrate the following functions w.r.t. x : `sqrt(4^x(4^x + 4))`


Integrate the following functions w.r.t. x : `sec^2x.sqrt(tan^2x + tan x - 7)`


Integrate the following functions w.r.t. x : `sqrt(x^2 + 2x + 5)`


Integrate the following functions w.r.t. x : `((1 + sin x)/(1 + cos x)).e^x`


Integrate the following functions w.r.t. x : `e^x/x [x (logx)^2 + 2 (logx)]`


Integrate the following functions w.r.t.x:

`e^(5x).[(5x.logx + 1)/x]`


Integrate the following functions w.r.t. x : `e^(sin^-1x)*[(x + sqrt(1 - x^2))/sqrt(1 - x^2)]`


Integrate the following functions w.r.t. x : `log(1 + x)^((1 + x)`


If f(x) = `sin^-1x/sqrt(1 - x^2), "g"(x) = e^(sin^-1x)`, then `int f(x)*"g"(x)*dx` = ______.


Integrate the following with respect to the respective variable : cos 3x cos 2x cos x


Integrate the following w.r.t.x : log (x2 + 1)


Integrate the following w.r.t.x : e2x sin x cos x


Solve the following differential equation.

(x2 − yx2 ) dy + (y2 + xy2) dx = 0


Evaluate: Find the primitive of `1/(1 + "e"^"x")`


Evaluate: `int "dx"/sqrt(4"x"^2 - 5)`


Evaluate: `int "dx"/("9x"^2 - 25)`


Evaluate: `int e^x/sqrt(e^(2x) + 4e^x + 13)` dx


Evaluate: `int "dx"/(25"x" - "x"(log "x")^2)`


`int (sinx)/(1 + sin x)  "d"x`


`int 1/sqrt(2x^2 - 5)  "d"x`


`int ["cosec"(logx)][1 - cot(logx)]  "d"x`


`int sqrt(tanx) + sqrt(cotx)  "d"x`


Choose the correct alternative:

`intx^(2)3^(x^3) "d"x` =


Choose the correct alternative:

`int ("d"x)/((x - 8)(x + 7))` =


`int(x + 1/x)^3 dx` = ______.


Evaluate `int 1/(x log x)  "d"x`


Evaluate `int 1/(4x^2 - 1)  "d"x`


Evaluate `int (2x + 1)/((x + 1)(x - 2))  "d"x`


`int "e"^x x/(x + 1)^2  "d"x`


`int [(log x - 1)/(1 + (log x)^2)]^2`dx = ?


∫ log x · (log x + 2) dx = ?


`int "e"^x int [(2 - sin 2x)/(1 - cos 2x)]`dx = ______.


Evaluate the following:

`int_0^1 x log(1 + 2x)  "d"x`


Evaluate the following:

`int_0^pi x log sin x "d"x`


State whether the following statement is true or false.

If `int (4e^x - 25)/(2e^x - 5)` dx = Ax – 3 log |2ex – 5| + c, where c is the constant of integration, then A = 5.


`int x/((x + 2)(x + 3)) dx` = ______ + `int 3/(x + 3) dx`


Find: `int e^x.sin2xdx`


If `π/2` < x < π, then `intxsqrt((1 + cos2x)/2)dx` = ______.


If `int (f(x))/(log(sin x))dx` = log[log sin x] + c, then f(x) is equal to ______.


Evaluate :

`int(4x - 6)/(x^2 - 3x + 5)^(3/2)  dx`


`int(1-x)^-2 dx` = ______


`int(3x^2)/sqrt(1+x^3) dx = sqrt(1+x^3)+c`


`inte^(xloga).e^x dx` is ______


Evaluate:

`intcos^-1(sqrt(x))dx`


Evaluate:

`int e^(logcosx)dx`


If u and v are two differentiable functions of x, then prove that `intu*v*dx = u*intv  dx - int(d/dx u)(intv  dx)dx`. Hence evaluate: `intx cos x  dx`


Complete the following activity:

`int_0^2 dx/(4 + x - x^2) `

= `int_0^2 dx/(-x^2 + square + square)`

= `int_0^2 dx/(-x^2 + x + 1/4 - square + 4)`

= `int_0^2 dx/ ((x- 1/2)^2 - (square)^2)`

= `1/sqrt17 log((20 + 4sqrt17)/(20 - 4sqrt17))`


Evaluate the following.

`intx^3 e^(x^2) dx`


Evaluate `int (1 + x + x^2/(2!))dx`


If ∫(cot x – cosec2 x)ex dx = ex f(x) + c then f(x) will be ______.


Evaluate the following.

`intx^3/sqrt(1+x^4)`dx


Evaluate the following.

`intx^2e^(4x)dx`


Evaluate the following.

`intx^3 e^(x^2)dx`


Evaluate the following.

`intx^3/(sqrt(1 + x^4))dx`


Evaluate.

`int(5x^2 - 6x + 3)/(2x - 3)  dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×