मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

Evaluate the following : ∫cos(x3).dx - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Evaluate the following : `int cos(root(3)(x)).dx`

बेरीज

उत्तर

Let I = `int cos(root(3)(x)).dx`

Put `root(3)(x)` = t
∴ x = t3
∴ dx = 3t2.dt

∴ I = `int 3t^2 cos t.dt`

= `3t^2 int cos t.dt - int [d/dt (3t)^2 int cos t.dt].dt`

= `3t^2 sint - int 6t sint.dt`

= `3t^2 sint - [6t sin t.dt - int {d/dt (6t) int sin t.dt }.dt]`

= `3t^2 sint - [6t (- cos t) - int 6( - cos t).dt]`

= 3t2 sin t + 6t cos t – 6  sin t + c
= 3(t2 – 2) sin t + 6t cos t + c

= `3(x^(2/3) - 2) sin(root(3)(x)) + 6root(3)(x) cos(root(3)(x)) + c`.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: Indefinite Integration - Exercise 3.3 [पृष्ठ १३७]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
पाठ 3 Indefinite Integration
Exercise 3.3 | Q 1.21 | पृष्ठ १३७

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Prove that:

`int sqrt(a^2 - x^2) dx = x/2 sqrt(a^2 - x^2) + a^2/2sin^-1(x/a)+c`


Prove that:

`int sqrt(x^2 - a^2)dx = x/2sqrt(x^2 - a^2) - a^2/2log|x + sqrt(x^2 - a^2)| + c`


If `int_(-pi/2)^(pi/2)sin^4x/(sin^4x+cos^4x)dx`, then the value of I is:

(A) 0

(B) π

(C) π/2

(D) π/4


`int1/xlogxdx=...............`

(A)log(log x)+ c

(B) 1/2 (logx )2+c

(C) 2log x + c

(D) log x + c


Integrate the function in x sin 3x.


Integrate the function in x log 2x.


Integrate the function in x cos-1 x.


Integrate the function in `e^x (1 + sin x)/(1+cos x)`.


Integrate the function in `e^x (1/x - 1/x^2)`.


`intx^2 e^(x^3) dx` equals: 


Evaluate the following : `int x^3.tan^-1x.dx`


Evaluate the following:

`int sec^3x.dx`


Evaluate the following : `int log(logx)/x.dx`


Evaluate the following : `int (t.sin^-1 t)/sqrt(1 - t^2).dt`


Integrate the following functions w.r.t. x : `e^(2x).sin3x`


Integrate the following functions w.r.t. x : `sqrt(x^2 + 2x + 5)`


Integrate the following functions w.r.t. x : `e^x .(1/x - 1/x^2)`


Integrate the following functions w.r.t. x : `log(1 + x)^((1 + x)`


Choose the correct options from the given alternatives :

`int (1)/(x + x^5)*dx` = f(x) + c, then `int x^4/(x + x^5)*dx` =


Choose the correct options from the given alternatives :

`int (1)/(cosx - cos^2x)*dx` =


Choose the correct options from the given alternatives :

`int cos -(3)/(7)x*sin -(11)/(7)x*dx` =


Choose the correct options from the given alternatives :

`int [sin (log x) + cos (log x)]*dx` =


Integrate the following with respect to the respective variable : `t^3/(t + 1)^2`


Integrate the following with respect to the respective variable : `(3 - 2sinx)/(cos^2x)`


Integrate the following w.r.t.x : `sqrt(x)sec(x^(3/2))*tan(x^(3/2))`


Integrate the following w.r.t.x : `(1)/(x^3 sqrt(x^2 - 1)`


Integrate the following w.r.t.x : log (x2 + 1)


Integrate the following w.r.t.x : e2x sin x cos x


Integrate the following w.r.t.x : sec4x cosec2x


Solve the following differential equation.

(x2 − yx2 ) dy + (y2 + xy2) dx = 0


Evaluate the following.

`int "e"^"x" (1/"x" - 1/"x"^2)`dx


Evaluate the following.

`int "e"^"x" [(log "x")^2 + (2 log "x")/"x"]` dx


Evaluate the following.

`int [1/(log "x") - 1/(log "x")^2]` dx


Evaluate the following.

`int (log "x")/(1 + log "x")^2` dx


`int ("x" + 1/"x")^3 "dx"` = ______


Evaluate: `int ("ae"^("x") + "be"^(-"x"))/("ae"^("x") - "be"^(−"x"))` dx


Evaluate: `int "dx"/sqrt(4"x"^2 - 5)`


`int sin4x cos3x  "d"x`


`int (x^2 + x - 6)/((x - 2)(x - 1))  "d"x` = x + ______ + c


`int logx/(1 + logx)^2  "d"x`


`int_0^"a" sqrt("x"/("a" - "x")) "dx"` = ____________.


`int cot "x".log [log (sin "x")] "dx"` = ____________.


`int "e"^x [x (log x)^2 + 2 log x] "dx"` = ______.


Find `int_0^1 x(tan^-1x)  "d"x`


Evaluate the following:

`int_0^pi x log sin x "d"x`


`int tan^-1 sqrt(x)  "d"x` is equal to ______.


The value of `int_(- pi/2)^(pi/2) (x^3 + x cos x + tan^5x + 1)  dx` is


The value of `int_0^(pi/2) log ((4 + 3 sin x)/(4 + 3 cos x))  dx` is


`int x/((x + 2)(x + 3)) dx` = ______ + `int 3/(x + 3) dx`


Evaluate: `int_0^(pi/4) (dx)/(1 + tanx)`


`int 1/sqrt(x^2 - a^2)dx` = ______.


`int(logx)^2dx` equals ______.


If `int(2e^(5x) + e^(4x) - 4e^(3x) + 4e^(2x) + 2e^x)/((e^(2x) + 4)(e^(2x) - 1)^2)dx = tan^-1(e^x/a) - 1/(b(e^(2x) - 1)) + C`, where C is constant of integration, then value of a + b is equal to ______.


If `π/2` < x < π, then `intxsqrt((1 + cos2x)/2)dx` = ______.


`int_0^1 x tan^-1 x  dx` = ______.


`int((4e^x - 25)/(2e^x - 5))dx = Ax + B log(2e^x - 5) + c`, then ______.


`int(1-x)^-2 dx` = ______


`int(3x^2)/sqrt(1+x^3) dx = sqrt(1+x^3)+c`


The integrating factor of `ylogy.dx/dy+x-logy=0` is ______.


Evaluate:

`int((1 + sinx)/(1 + cosx))e^x dx`


Evaluate:

`int (sin(x - a))/(sin(x + a))dx`


Evaluate the following.

`intx^3/sqrt(1+x^4)dx`


Evaluate the following.

`intx^3 e^(x^2) dx`


Evaluate the following.

`intx^3e^(x^2) dx`


If f′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).


Evaluate the following. 

`int x sqrt(1 + x^2)  dx`  


Evaluate the following.

`int x^3 e^(x^2) dx` 


Evaluate the following.

`intx^2e^(4x)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×