Advertisements
Advertisements
प्रश्न
Evaluate the following.
`int (log "x")/(1 + log "x")^2` dx
उत्तर १
Let I =`int (log "x")/(1 + log "x")^2` dx
Put log x = t
∴ x = et
∴ dx = et dt
∴ I = `int "t"/(1 + "t")^2 "e"^"t" "dt"`
`= int "e"^"t" [(("t" + 1) - 1)/(1 + "t")^2]` dt
`= int "e"^"t" [cancel("t + 1")/("1 + t")^cancel2 - 1/(1 + "t")^2]` dt
`= int "e"^"t" [1/(1 + "t") - 1/(1 + "t")^2]` dt
Put f(t) = `1/"1 + t"`
∴ f '(t) = `(-1)/(1 + "t")^2`
∴ `int "e"^"t" ["f"("t") + "f" '("t")]` dt
`= "e"^"t" "f"("t") + "c"`
`= "e"^"t" * 1/(1 + "t")` + c
∴ I = `"x"/(1 + log "x")` + c
उत्तर २
Let I =`int (log x)/(1 + log x)^2` dx
Adding and subtracting 1 from the numerator,
I =`int ((1 + log x) - 1)/(1 + log x)^2` dx
I =`int cancel((1 + log x))/(1 + log x)^cancel2 - int 1/(1 + log x)^2` dx
I =`int 1/(1 + log x) - int 1/(1 + log x)^2` dx
I =`int (1 + log x)^(-1) - int 1/(1 + log x)^2` dx
I =`int (1 + log x)^(-1).1 - int 1/(1 + log x)^2` dx
Integration by Parts,
`∫"u"."v" "dx" = "u" ∫"v" "dx" − ∫ [ ∫"v" "dx". "du"/"dx"] "dx"`
`"I" = (1 + log x)^(-1) ∫1 "dx" − ∫ [∫1 "dx". "d"/"dx" (1 + log x)^(-1)] "dx" - int 1/(1 + log x)^2 "dx"`
`"I" = (1 + log x)^(-1). x − ∫[cancelx. (-1)/(cancelx(1 + log x)^2)] "dx" - int 1/(1 + log x)^2 "dx"`
`"I" = (1 + log x)^(-1). x + ∫cancel(1/(1 + log x)^2) - int cancel(1/(1 + log x)^2) + c`
I = `(1 + log x)^(-1). x + c`
I = `x/(1 + log x). + c`
Notes
The answer in the textbook is incorrect.
APPEARS IN
संबंधित प्रश्न
If `int_(-pi/2)^(pi/2)sin^4x/(sin^4x+cos^4x)dx`, then the value of I is:
(A) 0
(B) π
(C) π/2
(D) π/4
Integrate the function in (sin-1x)2.
Integrate the function in `(xe^x)/(1+x)^2`.
Integrate the function in `e^x (1/x - 1/x^2)`.
Evaluate the following : `int x.sin^2x.dx`
Evaluate the following : `int (t.sin^-1 t)/sqrt(1 - t^2).dt`
Integrate the following w.r.t.x : `(1)/(x^3 sqrt(x^2 - 1)`
Integrate the following w.r.t.x : sec4x cosec2x
Evaluate the following.
`int "e"^"x" [(log "x")^2 + (2 log "x")/"x"]` dx
Evaluate the following.
`int [1/(log "x") - 1/(log "x")^2]` dx
`int ("x" + 1/"x")^3 "dx"` = ______
`int ["cosec"(logx)][1 - cot(logx)] "d"x`
`int sqrt(tanx) + sqrt(cotx) "d"x`
`int 1/(x^2 - "a"^2) "d"x` = ______ + c
Evaluate `int 1/(4x^2 - 1) "d"x`
Find: `int e^x.sin2xdx`
Find: `int (2x)/((x^2 + 1)(x^2 + 2)) dx`
Solve the differential equation (x2 + y2) dx - 2xy dy = 0 by completing the following activity.
Solution: (x2 + y2) dx - 2xy dy = 0
∴ `dy/dx=(x^2+y^2)/(2xy)` ...(1)
Puty = vx
∴ `dy/dx=square`
∴ equation (1) becomes
`x(dv)/dx = square`
∴ `square dv = dx/x`
On integrating, we get
`int(2v)/(1-v^2) dv =intdx/x`
∴ `-log|1-v^2|=log|x|+c_1`
∴ `log|x| + log|1-v^2|=logc ...["where" - c_1 = log c]`
∴ x(1 - v2) = c
By putting the value of v, the general solution of the D.E. is `square`= cx
Solve the following
`int_0^1 e^(x^2) x^3 dx`
Evaluate the following.
`intx^3/sqrt(1+x^4) dx`