Advertisements
Advertisements
प्रश्न
Evaluate the following.
`int [1/(log "x") - 1/(log "x")^2]` dx
उत्तर
Let I = `int [1/(log "x") - 1/(log "x")^2]` dx
Put log x = t
∴ x = et
∴ dx = et dt
∴ I = `int "e"^"t" [1/"t" - 1/"t"^2]` dt
Put f(t) = `1/"t"`
∴ f '(t) = `(-1)/"t"^2`
∴ I = `int "e"^"t" ["f"("t") + "f" '("x")]` dt
`= "e"^"t" "f"("t")` + c
∴ I = `"e"^"t" (1/"t") + "c" = "x"/(log "x")` + c
Notes
The answer in the textbook is incorrect.
APPEARS IN
संबंधित प्रश्न
Prove that:
`int sqrt(a^2 - x^2) dx = x/2 sqrt(a^2 - x^2) + a^2/2sin^-1(x/a)+c`
Integrate the function in x sin 3x.
Integrate the function in e2x sin x.
Evaluate the following : `int x^2 sin 3x dx`
Evaluate the following : `int x.sin^2x.dx`
Evaluate the following : `int log(logx)/x.dx`
Evaluate the following : `int cos sqrt(x).dx`
If f(x) = `sin^-1x/sqrt(1 - x^2), "g"(x) = e^(sin^-1x)`, then `int f(x)*"g"(x)*dx` = ______.
Integrate the following w.r.t. x: `(1 + log x)^2/x`
Evaluate the following.
`int "e"^"x" [(log "x")^2 + (2 log "x")/"x"]` dx
Evaluate: Find the primitive of `1/(1 + "e"^"x")`
Evaluate: `int ("ae"^("x") + "be"^(-"x"))/("ae"^("x") - "be"^(−"x"))` dx
`int ["cosec"(logx)][1 - cot(logx)] "d"x`
`int ("e"^xlog(sin"e"^x))/(tan"e"^x) "d"x`
`int 1/(x^2 - "a"^2) "d"x` = ______ + c
Evaluate `int 1/(4x^2 - 1) "d"x`
`int "e"^x [x (log x)^2 + 2 log x] "dx"` = ______.
`int((4e^x - 25)/(2e^x - 5))dx = Ax + B log(2e^x - 5) + c`, then ______.
If f'(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)
Evaluate the following.
`intx^3 e^(x^2)dx`