Advertisements
Advertisements
प्रश्न
Evaluate the following.
`int "e"^"x" [(log "x")^2 + (2 log "x")/"x"]` dx
उत्तर
Let I = `int "e"^"x" [(log "x")^2 + (2 log "x")/"x"]` dx
Put f(x) = (log x)2
∴ f '(x) = `(2 log "x")/"x"`
∴ I = ∫ ex [f(x) + f '(x)] + dx
= ex f(x) + c
∴ I = ex (log x)2 + c
Notes
The answer in the textbook is incorrect.
APPEARS IN
संबंधित प्रश्न
`int1/xlogxdx=...............`
(A)log(log x)+ c
(B) 1/2 (logx )2+c
(C) 2log x + c
(D) log x + c
Integrate the function in x log x.
Integrate the function in x cos-1 x.
Integrate the function in (sin-1x)2.
Evaluate the following : `int x^3.tan^-1x.dx`
Integrate the following functions w.r.t. x : `sqrt((x - 3)(7 - x)`
Choose the correct options from the given alternatives :
`int (1)/(cosx - cos^2x)*dx` =
Integrate the following with respect to the respective variable : `t^3/(t + 1)^2`
Choose the correct alternative from the following.
`int (("x"^3 + 3"x"^2 + 3"x" + 1))/("x + 1")^5 "dx"` =
Evaluate: `int "dx"/sqrt(4"x"^2 - 5)`
`int (sin(x - "a"))/(cos (x + "b")) "d"x`
∫ log x · (log x + 2) dx = ?
`int cot "x".log [log (sin "x")] "dx"` = ____________.
`int log x * [log ("e"x)]^-2` dx = ?
The value of `int_0^(pi/2) log ((4 + 3 sin x)/(4 + 3 cos x)) dx` is
State whether the following statement is true or false.
If `int (4e^x - 25)/(2e^x - 5)` dx = Ax – 3 log |2ex – 5| + c, where c is the constant of integration, then A = 5.
`int x/((x + 2)(x + 3)) dx` = ______ + `int 3/(x + 3) dx`
The integrating factor of `ylogy.dx/dy+x-logy=0` is ______.
`int(xe^x)/((1+x)^2) dx` = ______
Evaluate `int(1 + x + x^2/(2!))dx`.