Advertisements
Advertisements
प्रश्न
Choose the correct alternative from the following.
`int (("x"^3 + 3"x"^2 + 3"x" + 1))/("x + 1")^5 "dx"` =
पर्याय
`(-1)/"x + 1"` + c
`((-1)/"x + 1")^5` + c
log(x + 1) + c
log |x + 1|5 + c
उत्तर
`(-1)/"x + 1"` + c
Explanation:
= `int ("x + 1")^3/("x + 1")^5` dx
∵ (a + b)3 = a3 + 3a2b + 3ab2 + b3
(x + 1)3 = x3 + 3x2 + 3x + 1
= `1/((x + 1)^2) dx`
= `int (x + 1)^-2 . dx`
= `(x + 1)^(-2 + 1)/-2 + 1 + c`
= `(x + 1)^-1/-1 + c`
= `(-1)/(x + 1) + c`
`= (-1)/"x + 1"` + c
APPEARS IN
संबंधित प्रश्न
Integrate the function in tan-1 x.
Integrate the function in e2x sin x.
`intx^2 e^(x^3) dx` equals:
Find :
`∫(log x)^2 dx`
Evaluate the following : `int e^(2x).cos 3x.dx`
Evaluate the following:
`int x.sin 2x. cos 5x.dx`
Integrate the following functions w.r.t. x : `x^2 .sqrt(a^2 - x^6)`
Integrate the following functions w.r.t. x : [2 + cot x – cosec2x]ex
Integrate the following functions w.r.t. x : cosec (log x)[1 – cot (log x)]
Evaluate the following.
`int "x"^3 "e"^("x"^2)`dx
Evaluate the following.
`int (log "x")/(1 + log "x")^2` dx
Evaluate: `int "dx"/("x"[(log "x")^2 + 4 log "x" - 1])`
Evaluate: `int "e"^"x"/(4"e"^"2x" -1)` dx
`int "e"^x x/(x + 1)^2 "d"x`
`int "e"^x [x (log x)^2 + 2 log x] "dx"` = ______.
Evaluate:
`int(1+logx)/(x(3+logx)(2+3logx)) dx`
Prove that `int sqrt(x^2 - a^2)dx = x/2 sqrt(x^2 - a^2) - a^2/2 log(x + sqrt(x^2 - a^2)) + c`
Evaluate:
`int (sin(x - a))/(sin(x + a))dx`
Evaluate the following.
`int x sqrt(1 + x^2) dx`