मराठी

Find : ∫ ( Log X ) 2 D X - Mathematics

Advertisements
Advertisements

प्रश्न

Find : 

`∫(log x)^2 dx`

बेरीज

उत्तर

`∫(log x)^2 dx`

let `u = (logx)^2 , "v" = 1`

`∫u."v" dx = u∫"v"dx - ∫[(du)/dx∫"v"dx]dx`

`therefore ∫ (log x)^2 . 1dx = (log x)^2 ∫1dx - ∫[2log x xx 1/x xx xdx]`

 = `x(log|x|^2) - 2∫log x  dx`

`x(log x)^2 - 2(x log|x| - x) + C`

 = `x(log|x|)^2 - 2x log|x| + 2x + C` . 

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2018-2019 (March) 65/3/3

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Integrate : sec3 x w. r. t. x.


`int1/xlogxdx=...............`

(A)log(log x)+ c

(B) 1/2 (logx )2+c

(C) 2log x + c

(D) log x + c


Integrate the function in (x2 + 1) log x.


Evaluate the following:

`int x.sin 2x. cos 5x.dx`


Integrate the following functions w.r.t. x : `sqrt((x - 3)(7 - x)`


Integrate the following functions w.r.t.x:

`e^(5x).[(5x.logx + 1)/x]`


Choose the correct options from the given alternatives :

`int (log (3x))/(xlog (9x))*dx` =


Choose the correct options from the given alternatives :

`int (sin^m x)/(cos^(m+2)x)*dx` = 


Choose the correct options from the given alternatives :

`int tan(sin^-1 x)*dx` =


Integrate the following with respect to the respective variable : `(3 - 2sinx)/(cos^2x)`


Integrate the following w.r.t.x : log (x2 + 1)


Evaluate the following.

`int "e"^"x" "x"/("x + 1")^2` dx


Choose the correct alternative from the following.

`int (1 - "x")^(-2) "dx"` = 


Evaluate: `int "dx"/("x"[(log "x")^2 + 4 log "x" - 1])`


`int (sinx)/(1 + sin x)  "d"x`


`int 1/(4x + 5x^(-11))  "d"x`


`int (sin(x - "a"))/(cos (x + "b"))  "d"x`


Evaluate `int 1/(x(x - 1))  "d"x`


Evaluate the following:

`int ((cos 5x + cos 4x))/(1 - 2 cos 3x) "d"x`


Evaluate the following:

`int_0^pi x log sin x "d"x`


The value of `int_0^(pi/2) log ((4 + 3 sin x)/(4 + 3 cos x))  dx` is


The integral `int x cos^-1 ((1 - x^2)/(1 + x^2))dx (x > 0)` is equal to ______.


Find `int e^x ((1 - sinx)/(1 - cosx))dx`.


Evaluate: 

`int(1+logx)/(x(3+logx)(2+3logx))  dx`


Solve the differential equation (x2 + y2) dx - 2xy dy = 0 by completing the following activity.

Solution: (x2 + y2) dx - 2xy dy = 0

∴ `dy/dx=(x^2+y^2)/(2xy)`                      ...(1)

Puty = vx

∴ `dy/dx=square`

∴ equation (1) becomes

`x(dv)/dx = square`

∴ `square  dv = dx/x`

On integrating, we get

`int(2v)/(1-v^2) dv =intdx/x`

∴ `-log|1-v^2|=log|x|+c_1`

∴ `log|x| + log|1-v^2|=logc       ...["where" - c_1 = log c]`

∴ x(1 - v2) = c

By putting the value of v, the general solution of the D.E. is `square`= cx


Evaluate the following.

`int (x^3)/(sqrt(1 + x^4))dx`


Evaluate:

`inte^x sinx  dx`


`int (sin^-1 sqrt(x) + cos^-1 sqrt(x))dx` = ______.


If ∫(cot x – cosec2 x)ex dx = ex f(x) + c then f(x) will be ______.


The value of `inta^x.e^x dx` equals


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×