मराठी

If ∫(cot x – cosec2 x)ex dx = ex f(x) + c then f(x) will be ______. - Mathematics

Advertisements
Advertisements

प्रश्न

If ∫(cot x – cosec2 x)ex dx = ex f(x) + c then f(x) will be ______.

पर्याय

  • cot x + cosec x

  • cot2 x

  • cot x

  • cosec x

MCQ
रिकाम्या जागा भरा

उत्तर

If ∫(cot x – cosec2x)exdx = ex f(x) + c then f(x) will be cot x.

Explanation:

∫(cot x – cosec2x)ex dx = ex f(x) + c

Then, ∫(cot x – cosec2x)ex dx

=  ∫ex cot x dx – ∫ex cosec2 x dx

On integrating by parts

= `cot x int e^x dx - int d/(dx) cot x int e^x dx - int e^x "cosec"^2 dx + c`

= ex cot x + ∫ex cosec2x dx – ∫ex cosec2 dx + c

= ex cot x + c

Hence, f(x) = cot x.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2023-2024 (February) Official

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Prove that:

`int sqrt(a^2 - x^2) dx = x/2 sqrt(a^2 - x^2) + a^2/2sin^-1(x/a)+c`


If `int_(-pi/2)^(pi/2)sin^4x/(sin^4x+cos^4x)dx`, then the value of I is:

(A) 0

(B) π

(C) π/2

(D) π/4


If u and v are two functions of x then prove that

`intuvdx=uintvdx-int[du/dxintvdx]dx`

Hence evaluate, `int xe^xdx`


Integrate the function in `(x cos^(-1) x)/sqrt(1-x^2)`.


Evaluate the following : `int x^3.logx.dx`


Integrate the following functions w.r.t. x : `(x + 1) sqrt(2x^2 + 3)`


Integrate the following functions w.r.t. x : `[x/(x + 1)^2].e^x`


Choose the correct options from the given alternatives :

`int sin (log x)*dx` =


Choose the correct options from the given alternatives :

`int [sin (log x) + cos (log x)]*dx` =


Integrate the following w.r.t.x : log (x2 + 1)


Choose the correct alternative from the following.

`int (("e"^"2x" + "e"^"-2x")/"e"^"x") "dx"` = 


Choose the correct alternative from the following.

`int (("x"^3 + 3"x"^2 + 3"x" + 1))/("x + 1")^5  "dx"` = 


Evaluate: `int "dx"/(3 - 2"x" - "x"^2)`


Evaluate: `int "dx"/(25"x" - "x"(log "x")^2)`


`int (sin(x - "a"))/(cos (x + "b"))  "d"x`


`int ("d"x)/(x - x^2)` = ______


Evaluate `int 1/(4x^2 - 1)  "d"x`


`int 1/sqrt(x^2 - 8x - 20)  "d"x`


`int tan^-1 sqrt(x)  "d"x` is equal to ______.


`int((4e^x - 25)/(2e^x - 5))dx = Ax + B log(2e^x - 5) + c`, then ______.


Find: `int e^(x^2) (x^5 + 2x^3)dx`.


Solution of the equation `xdy/dx=y log y` is ______


`int logx  dx = x(1+logx)+c`


`int(xe^x)/((1+x)^2)  dx` = ______


Evaluate `int tan^-1x  dx`


Evaluate the following.

`intx^3  e^(x^2) dx`


Complete the following activity:

`int_0^2 dx/(4 + x - x^2) `

= `int_0^2 dx/(-x^2 + square + square)`

= `int_0^2 dx/(-x^2 + x + 1/4 - square + 4)`

= `int_0^2 dx/ ((x- 1/2)^2 - (square)^2)`

= `1/sqrt17 log((20 + 4sqrt17)/(20 - 4sqrt17))`


Evaluate the following.

`intx^3/sqrt(1+x^4)dx`


Evaluate `int(1 + x + x^2/(2!))dx`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×