Advertisements
Advertisements
प्रश्न
If ∫(cot x – cosec2 x)ex dx = ex f(x) + c then f(x) will be ______.
विकल्प
cot x + cosec x
cot2 x
cot x
cosec x
उत्तर
If ∫(cot x – cosec2x)exdx = ex f(x) + c then f(x) will be cot x.
Explanation:
∫(cot x – cosec2x)ex dx = ex f(x) + c
Then, ∫(cot x – cosec2x)ex dx
= ∫ex cot x dx – ∫ex cosec2 x dx
On integrating by parts
= `cot x int e^x dx - int d/(dx) cot x int e^x dx - int e^x "cosec"^2 dx + c`
= ex cot x + ∫ex cosec2x dx – ∫ex cosec2 dx + c
= ex cot x + c
Hence, f(x) = cot x.
APPEARS IN
संबंधित प्रश्न
Integrate the function in x log 2x.
Integrate the function in x sin-1 x.
Evaluate the following : `int x^3.tan^-1x.dx`
Evaluate the following : `int x.sin^2x.dx`
Evaluate the following : `int x^2*cos^-1 x*dx`
Integrate the following functions w.r.t. x : `sqrt((x - 3)(7 - x)`
Integrate the following functions w.r.t. x : `e^x .(1/x - 1/x^2)`
Choose the correct options from the given alternatives :
`int (x- sinx)/(1 - cosx)*dx` =
Integrate the following w.r.t.x : `(1)/(x^3 sqrt(x^2 - 1)`
Integrate the following w.r.t.x : e2x sin x cos x
Solve the following differential equation.
(x2 − yx2 ) dy + (y2 + xy2) dx = 0
Evaluate the following.
`int "x"^2 "e"^"4x"`dx
Evaluate the following.
`int "e"^"x" "x - 1"/("x + 1")^3` dx
Choose the correct alternative from the following.
`int (("x"^3 + 3"x"^2 + 3"x" + 1))/("x + 1")^5 "dx"` =
Evaluate: `int "dx"/sqrt(4"x"^2 - 5)`
Evaluate: `int "dx"/(3 - 2"x" - "x"^2)`
`int 1/sqrt(2x^2 - 5) "d"x`
`int (cos2x)/(sin^2x cos^2x) "d"x`
`int sin4x cos3x "d"x`
`int ("e"^xlog(sin"e"^x))/(tan"e"^x) "d"x`
`int"e"^(4x - 3) "d"x` = ______ + c
`int log x * [log ("e"x)]^-2` dx = ?
If u and v ore differentiable functions of x. then prove that:
`int uv dx = u intv dx - int [(du)/(d) intv dx]dx`
Hence evaluate `intlog x dx`
Evaluate: `int_0^(pi/4) (dx)/(1 + tanx)`
Find: `int e^x.sin2xdx`
Find `int e^(cot^-1x) ((1 - x + x^2)/(1 + x^2))dx`.
Evaluate :
`int(4x - 6)/(x^2 - 3x + 5)^(3/2) dx`
`int(xe^x)/((1+x)^2) dx` = ______
Evaluate:
`int1/(x^2 + 25)dx`
Evaluate the following.
`intx^3/(sqrt(1 + x^4))dx`