Advertisements
Advertisements
प्रश्न
Evaluate: `int_0^(pi/4) (dx)/(1 + tanx)`
उत्तर
Let I = `int_0^(pi/4) (dx)/(1 + tanx)`
= `int_0^(pi/4) (dx)/(1 + sinx/cosx)`
= `int_0^(pi/4) (cos x dx)/(cosx + sinx)`
= `1/2 int_0^(pi/4) (2cosx)/(cosx + sinx) dx`
= `1/2 int_0^(pi/4) (cosx + sinx + cosx - sinx)/(cosx + sinx) dx`
= `1/2 [int_0^(pi/4) (cosx + sinx)/(cosx + sinx) dx + int_0^(pi/4) (cosx - sinx)/(cosx + sinx) dx]`
= `1/2 [int_0^(pi/4) 1dx + int_0^(pi/4) (cosx - sinx)/(cosx + sinx) dx]`
= `1/2 (I_1 + I_2)`
Where, I1 = `int_0^(pi/4) 1dx`
= `[x]_0^(pi/4) = pi/4`
And I2 = `int_0^(pi/4) (cosx - sinx)/(cosx + sinx) dx`
Let cosx + sinx = t
⇒ (–sinx + cosx)dx = dt
When x = 0, t = 1
And x = `pi/4`, t = `2/sqrt(2)`
∴ I2 = `int_1^(2/sqrt(2)) (dt)/t`
= `[logt]_1^(2/sqrt(2))`
= `log 2/sqrt(2) - log 1`
= `log 2/sqrt(2) - 0`
= `log2^(3/2)`
= `3/2 log 2`
∴ I = `1/2(I_1 + I_2)`
or I = `1/2(pi/4 + 3/2 log 2)`
APPEARS IN
संबंधित प्रश्न
Integrate the function in x sin 3x.
Integrate the function in x tan-1 x.
`int e^x sec x (1 + tan x) dx` equals:
Integrate the following functions w.r.t. x:
sin (log x)
Integrate the following functions w.r.t. x : `sqrt(2x^2 + 3x + 4)`
If f(x) = `sin^-1x/sqrt(1 - x^2), "g"(x) = e^(sin^-1x)`, then `int f(x)*"g"(x)*dx` = ______.
Integrate the following w.r.t.x : `log (1 + cosx) - xtan(x/2)`
Integrate the following w.r.t.x : e2x sin x cos x
Evaluate the following.
`int "x"^2 "e"^"4x"`dx
Evaluate: `int "dx"/(5 - 16"x"^2)`
Evaluate: ∫ (log x)2 dx
`int (sinx)/(1 + sin x) "d"x`
`int 1/(4x + 5x^(-11)) "d"x`
`int 1/sqrt(2x^2 - 5) "d"x`
`int(x + 1/x)^3 dx` = ______.
Evaluate `int 1/(x log x) "d"x`
Evaluate `int 1/(4x^2 - 1) "d"x`
`int [(log x - 1)/(1 + (log x)^2)]^2`dx = ?
∫ log x · (log x + 2) dx = ?
The value of `int "e"^(5x) (1/x - 1/(5x^2)) "d"x` is ______.
`int "e"^x int [(2 - sin 2x)/(1 - cos 2x)]`dx = ______.
The value of `int_0^(pi/2) log ((4 + 3 sin x)/(4 + 3 cos x)) dx` is
Find `int e^x ((1 - sinx)/(1 - cosx))dx`.
`int1/sqrt(x^2 - a^2) dx` = ______
`int(3x^2)/sqrt(1+x^3) dx = sqrt(1+x^3)+c`
Solve the differential equation (x2 + y2) dx - 2xy dy = 0 by completing the following activity.
Solution: (x2 + y2) dx - 2xy dy = 0
∴ `dy/dx=(x^2+y^2)/(2xy)` ...(1)
Puty = vx
∴ `dy/dx=square`
∴ equation (1) becomes
`x(dv)/dx = square`
∴ `square dv = dx/x`
On integrating, we get
`int(2v)/(1-v^2) dv =intdx/x`
∴ `-log|1-v^2|=log|x|+c_1`
∴ `log|x| + log|1-v^2|=logc ...["where" - c_1 = log c]`
∴ x(1 - v2) = c
By putting the value of v, the general solution of the D.E. is `square`= cx
Evaluate `int(1 + x + (x^2)/(2!))dx`
Evaluate:
`intcos^-1(sqrt(x))dx`
Evaluate:
`int x^2 cos x dx`