हिंदी

Evaluate: ∫0π4dx1+tanx - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate: `int_0^(pi/4) (dx)/(1 + tanx)`

योग

उत्तर

Let I = `int_0^(pi/4) (dx)/(1 + tanx)`

= `int_0^(pi/4) (dx)/(1 + sinx/cosx)`

= `int_0^(pi/4) (cos x dx)/(cosx + sinx)`

= `1/2 int_0^(pi/4) (2cosx)/(cosx + sinx) dx`

= `1/2 int_0^(pi/4) (cosx + sinx + cosx - sinx)/(cosx + sinx) dx`

= `1/2 [int_0^(pi/4) (cosx + sinx)/(cosx + sinx) dx + int_0^(pi/4) (cosx - sinx)/(cosx + sinx) dx]`

= `1/2 [int_0^(pi/4) 1dx + int_0^(pi/4) (cosx - sinx)/(cosx + sinx) dx]`

= `1/2 (I_1 + I_2)`

Where, I1 = `int_0^(pi/4) 1dx`

= `[x]_0^(pi/4) = pi/4`

And I2 = `int_0^(pi/4) (cosx - sinx)/(cosx + sinx) dx`

Let cosx + sinx = t

⇒ (–sinx + cosx)dx = dt

When x = 0, t = 1

And x = `pi/4`, t = `2/sqrt(2)`

∴ I2 = `int_1^(2/sqrt(2)) (dt)/t`

= `[logt]_1^(2/sqrt(2))`

= `log  2/sqrt(2) - log 1`

= `log  2/sqrt(2) - 0`

= `log2^(3/2)`

= `3/2 log 2`

∴ I = `1/2(I_1 + I_2)`

or I = `1/2(pi/4 + 3/2 log 2)`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2021-2022 (April) Term 2 - Delhi Set 1

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Integrate the function in x sin 3x.


Integrate the function in x tan-1 x.


`int e^x sec x (1 +   tan x) dx` equals:


Integrate the following functions w.r.t. x:

sin (log x)


Integrate the following functions w.r.t. x : `sqrt(2x^2 + 3x + 4)`


If f(x) = `sin^-1x/sqrt(1 - x^2), "g"(x) = e^(sin^-1x)`, then `int f(x)*"g"(x)*dx` = ______.


Integrate the following w.r.t.x : `log (1 + cosx) - xtan(x/2)`


Integrate the following w.r.t.x : e2x sin x cos x


Evaluate the following.

`int "x"^2 "e"^"4x"`dx


Evaluate: `int "dx"/(5 - 16"x"^2)`


Evaluate: ∫ (log x)2 dx


`int (sinx)/(1 + sin x)  "d"x`


`int 1/(4x + 5x^(-11))  "d"x`


`int 1/sqrt(2x^2 - 5)  "d"x`


`int(x + 1/x)^3 dx` = ______.


Evaluate `int 1/(x log x)  "d"x`


Evaluate `int 1/(4x^2 - 1)  "d"x`


`int [(log x - 1)/(1 + (log x)^2)]^2`dx = ?


∫ log x · (log x + 2) dx = ?


The value of `int "e"^(5x) (1/x - 1/(5x^2))  "d"x` is ______.


`int "e"^x int [(2 - sin 2x)/(1 - cos 2x)]`dx = ______.


The value of `int_0^(pi/2) log ((4 + 3 sin x)/(4 + 3 cos x))  dx` is


Find `int e^x ((1 - sinx)/(1 - cosx))dx`.


`int1/sqrt(x^2 - a^2) dx` = ______


`int(3x^2)/sqrt(1+x^3) dx = sqrt(1+x^3)+c`


Solve the differential equation (x2 + y2) dx - 2xy dy = 0 by completing the following activity.

Solution: (x2 + y2) dx - 2xy dy = 0

∴ `dy/dx=(x^2+y^2)/(2xy)`                      ...(1)

Puty = vx

∴ `dy/dx=square`

∴ equation (1) becomes

`x(dv)/dx = square`

∴ `square  dv = dx/x`

On integrating, we get

`int(2v)/(1-v^2) dv =intdx/x`

∴ `-log|1-v^2|=log|x|+c_1`

∴ `log|x| + log|1-v^2|=logc       ...["where" - c_1 = log c]`

∴ x(1 - v2) = c

By putting the value of v, the general solution of the D.E. is `square`= cx


Evaluate `int(1 + x + (x^2)/(2!))dx`


Evaluate:

`intcos^-1(sqrt(x))dx`


Evaluate:

`int x^2 cos x  dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×