हिंदी

If a→ and b→ are two vectors such that |a→+b→|=|b→|, then prove that (a→+2b→) is perpendicular to a→. - Mathematics

Advertisements
Advertisements

प्रश्न

If `veca` and `vecb` are two vectors such that `|veca + vecb| = |vecb|`, then prove that `(veca + 2vecb)` is perpendicular to `veca`.

योग

उत्तर

Given, `|veca + vecb| = |vecb|`

On squaring both sides, we get

`|veca + vecb|^2 = |vecb|^2`

⇒ `|veca|^2 + |vecb|^2 + 2|veca||vecb| = |vecb|^2`

⇒ `|veca|^2 + 2|veca||vecb|` = 0

⇒ `|veca|.(|veca| + 2|vecb|)` = 0

⇒ `veca.(veca + 2vecb)` = 0

Since, dot product of `veca` and `veca + 2vecb` is zero, thus vectors are perpendicular.

Hence proved

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2021-2022 (April) Term 2 - Delhi Set 1

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the angle between the vectors `hati - 2hatj + 3hatk` and `3hati - 2hatj + hatk`.


Find the projection of the vector `hati - hatj` on the vector `hati + hatj`.


Find the projection of the vector `hati + 3hatj + 7hatk`  on the vector `7hati - hatj + 8hatk`.


Show that `|veca|vecb+|vecb|veca`  is perpendicular to `|veca|vecb-|vecb|veca,` for any two nonzero vectors `veca and vecb`.


If the vertices A, B, C of a triangle ABC are (1, 2, 3), (–1, 0, 0), (0, 1, 2), respectively, then find ∠ABC. [∠ABC is the angle between the vectors `bar(BA)` and `bar(BC)`].


If P, Q and R are three collinear points such that \[\overrightarrow{PQ} = \vec{a}\] and \[\overrightarrow{QR} = \vec{b}\].  Find the vector \[\overrightarrow{PR}\].


If \[\vec{a}\], \[\vec{b}\], \[\vec{c}\] are non-coplanar vectors, prove that the points having the following position vectors are collinear: \[\vec{a} + \vec{b} + \vec{c} , 4 \vec{a} + 3 \vec{b} , 10 \vec{a} + 7 \vec{b} - 2 \vec{c}\]


Using vectors, find the value of λ such that the points (λ, −10, 3), (1, −1, 3) and (3, 5, 3) are collinear.


Using vector method, prove that the following points are collinear:
A (1, 2, 7), B (2, 6, 3) and C (3, 10, −1)


Using vector method, prove that the following points are collinear:
A (−3, −2, −5), B (1, 2, 3) and C (3, 4, 7)


Let `veca` , `vecb` and `vecc` be three vectors such that `|veca| = 1,|vecb| = 2, |vecc| = 3.` If the projection of `vecb` along `veca` is equal to the projection of `vecc` along `veca`; and `vecb` , `vecc` are perpendicular to each other, then find `|3veca - 2vecb + 2vecc|`.


Projection vector of `vec"a"` on `vec"b"` is ______.


What is the angle between two vectors `veca` and `vecb` with magnitudes `sqrt(3)` and 2 respectively, such that `veca * vecb = sqrt(6)`


What is the angle between the vectors `hati - 2hatj + 3hatk` and `3hati - 2hatj + hatk`


The scalar projection of the vector `3hati - hatj - 2hatk` on the vector `hati + 2hatj - 3hatk` is ______.


If `veca` and `vecb` are unit vectors and θ is the angle between them, then prove that `sin  θ/2 = 1/2 |veca  - vecb|`.


Write the projection of the vector `(vecb + vecc)` on the vector `veca`, where `veca = 2hati - 2hatj + hatk, vecb = hati + 2hatj - 2hatk` and `vecc = 2hati - hatj + 4hatk`.


A unit vector `hata` makes equal but acute angles on the coordinate axes. The projection of the vector `hata` on the vector `vecb = 5hati + 7hatj - hatk` is ______.


If `veca, vecb, vecc` are mutually perpendicular vectors of equal magnitudes, show that the vector `vecc* vecd = 15` is equally inclined to `veca, vecb "and"  vecc.` 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×