हिंदी

A unit vector a^ makes equal but acute angles on the coordinate axes. The projection of the vector a^ on the vector b^=5i^+7j^-k^ is ______. - Mathematics

Advertisements
Advertisements

प्रश्न

A unit vector `hata` makes equal but acute angles on the coordinate axes. The projection of the vector `hata` on the vector `vecb = 5hati + 7hatj - hatk` is ______.

विकल्प

  • `11/15`

  • `11/(5sqrt(3))`

  • `4/5`

  • `3/(5sqrt(3))`

MCQ
रिक्त स्थान भरें

उत्तर

A unit vector `hata` makes equal but acute angles on the coordinate axes. The projection of the vector `hata` on the vector `vecb = 5hati + 7hatj - hatk` is `underlinebb(11/15)`.

Explanation:

Let θ be the equal acute angle with coordinate axes.

`\implies` l = m = n = cos θ and l2 + m2 + n2 = 1

`\implies` 3l2 = 1

`\implies` l = `1/sqrt(3)`

So `veca = (1/sqrt(3) hati + 1/sqrt(3) hatj + 1/sqrt(3) hatk)`

and projection on b = `5hati + 7hatj - hatk` is given by

`(veca. vecb)/|b| = ((5 + 7 - 1)/sqrt(3))/sqrt(25 + 49 + 1)`

= `11/sqrt(225)`

= `11/15`.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2022-2023 (March) Delhi Set 2

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the angle between two vectors `veca` and `vecb` with magnitudes `sqrt3` and 2, respectively having `veca.vecb = sqrt6`.


Find the angle between the vectors `hati - 2hatj + 3hatk` and `3hati - 2hatj + hatk`.


Find the projection of the vector `hati - hatj` on the vector `hati + hatj`.


Find the projection of the vector `hati + 3hatj + 7hatk`  on the vector `7hati - hatj + 8hatk`.


Show that `|veca|vecb+|vecb|veca`  is perpendicular to `|veca|vecb-|vecb|veca,` for any two nonzero vectors `veca and vecb`.


If the vertices A, B, C of a triangle ABC are (1, 2, 3), (–1, 0, 0), (0, 1, 2), respectively, then find ∠ABC. [∠ABC is the angle between the vectors `bar(BA)` and `bar(BC)`].


If P, Q and R are three collinear points such that \[\overrightarrow{PQ} = \vec{a}\] and \[\overrightarrow{QR} = \vec{b}\].  Find the vector \[\overrightarrow{PR}\].


If \[\vec{a}\], \[\vec{b}\], \[\vec{c}\] are non-coplanar vectors, prove that the points having the following position vectors are collinear: \[\vec{a,} \vec{b,} 3 \vec{a} - 2 \vec{b}\]


If \[\vec{a}\], \[\vec{b}\], \[\vec{c}\] are non-coplanar vectors, prove that the points having the following position vectors are collinear: \[\vec{a} + \vec{b} + \vec{c} , 4 \vec{a} + 3 \vec{b} , 10 \vec{a} + 7 \vec{b} - 2 \vec{c}\]


Using vectors, find the value of λ such that the points (λ, −10, 3), (1, −1, 3) and (3, 5, 3) are collinear.


Using vector method, prove that the following points are collinear:
A (6, −7, −1), B (2, −3, 1) and C (4, −5, 0)


Using vector method, prove that the following points are collinear:
A (2, −1, 3), B (4, 3, 1) and C (3, 1, 2)


Using vector method, prove that the following points are collinear:
A (−3, −2, −5), B (1, 2, 3) and C (3, 4, 7)


The projection of vector `vec"a" = 2hat"i" - hat"j" + hat"k"` along `vec"b" = hat"i" + 2hat"j" + 2hat"k"` is ______.


Projection vector of `vec"a"` on `vec"b"` is ______.


If `veca` is a non zero vector of magnitude `a` and `lambda` `veca` non-zero scolor, then `lambda` is a unit vector of.


The scalar projection of the vector `3hati - hatj - 2hatk` on the vector `hati + 2hatj - 3hatk` is ______.


If `veca` and `vecb` are two vectors such that `|veca + vecb| = |vecb|`, then prove that `(veca + 2vecb)` is perpendicular to `veca`.


If `veca` and `vecb` are unit vectors and θ is the angle between them, then prove that `sin  θ/2 = 1/2 |veca  - vecb|`.


Projection of vector `2hati + 3hatj` on the vector `3hati - 2hatj` is ______.


If `veca, vecb, vecc` are mutually perpendicular vectors of equal magnitudes, show that the vector `vecc* vecd = 15` is equally inclined to `veca, vecb "and"  vecc.` 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×