हिंदी

Using Vectors, Find the Value of λ Such that the Points (λ, −10, 3), (1, −1, 3) and (3, 5, 3) Are Collinear. [Ncert Exemplar] - Mathematics

Advertisements
Advertisements

प्रश्न

Using vectors, find the value of λ such that the points (λ, −10, 3), (1, −1, 3) and (3, 5, 3) are collinear.

योग

उत्तर

Let the given points be A(λ, −10, 3), B(1, −1, 3) and C(3, 5, 3).
\[\overrightarrow{AB} = \left( \hat{i} - \hat{j} + 3 \hat{k} \right) - \left( \lambda \hat{i} - 10 \hat{j} + 3 \hat{k} \right) = \left( 1 - \lambda \right) \hat{i} + 9 \hat{j}\]
\[\overrightarrow{AC} = \left( 3 \hat{i} + 5 \hat{j} + 3 \hat{k} \right) - \left( \lambda \hat{i} - 10 \hat{j} + 3 \hat{k} \right) = \left( 3 - \lambda \right) \hat{i} + 15 \hat{j}\]
If the points A, B, C are collinear, then
\[\overrightarrow{AB} = k \overrightarrow{AC}\]  for some scalar k 
\[\Rightarrow \left( 1 - \lambda \right) \hat{i} + 9 \hat{j} = k\left[ \left( 3 - \lambda \right) \hat{i} + 15 \hat{j} \right]\]
\[ \Rightarrow 1 - \lambda = k\left( 3 - \lambda \right) \text{ and }9 = 15k \left(\text{ Equating coefficients of }\hat{i}\text{ and }\hat{j} \right)\]
\[ \Rightarrow 1 - \lambda = \frac{3}{5}\left( 3 - \lambda \right)\]
\[ \Rightarrow 5 - 5\lambda = 9 - 3\lambda\]
\[ \Rightarrow 2\lambda = - 4\]
\[ \Rightarrow \lambda = - 2\]
Thus, the value of λ is −2.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 23: Algebra of Vectors - Exercise 23.7 [पृष्ठ ६१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 23 Algebra of Vectors
Exercise 23.7 | Q 13 | पृष्ठ ६१

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the angle between the vectors `hati - 2hatj + 3hatk` and `3hati - 2hatj + hatk`.


Find the projection of the vector `hati - hatj` on the vector `hati + hatj`.


Find the projection of the vector `hati + 3hatj + 7hatk`  on the vector `7hati - hatj + 8hatk`.


If the vertices A, B, C of a triangle ABC are (1, 2, 3), (–1, 0, 0), (0, 1, 2), respectively, then find ∠ABC. [∠ABC is the angle between the vectors `bar(BA)` and `bar(BC)`].


Show that the points A (1, 2, 7), B (2, 6, 3) and C (3, 10, –1) are collinear.


Find the vector equation of the line passing through the point A(1, 2, –1) and parallel to the line 5x – 25 = 14 – 7y = 35z.


If \[\vec{a}\], \[\vec{b}\], \[\vec{c}\] are non-coplanar vectors, prove that the points having the following position vectors are collinear: \[\vec{a,} \vec{b,} 3 \vec{a} - 2 \vec{b}\]


If \[\vec{a}\], \[\vec{b}\], \[\vec{c}\] are non-coplanar vectors, prove that the points having the following position vectors are collinear: \[\vec{a} + \vec{b} + \vec{c} , 4 \vec{a} + 3 \vec{b} , 10 \vec{a} + 7 \vec{b} - 2 \vec{c}\]


Using vector method, prove that the following points are collinear:
A (1, 2, 7), B (2, 6, 3) and C (3, 10, −1)


Using vector method, prove that the following points are collinear:
A (−3, −2, −5), B (1, 2, 3) and C (3, 4, 7)


Let `veca` , `vecb` and `vecc` be three vectors such that `|veca| = 1,|vecb| = 2, |vecc| = 3.` If the projection of `vecb` along `veca` is equal to the projection of `vecc` along `veca`; and `vecb` , `vecc` are perpendicular to each other, then find `|3veca - 2vecb + 2vecc|`.


The projection of vector `vec"a" = 2hat"i" - hat"j" + hat"k"` along `vec"b" = hat"i" + 2hat"j" + 2hat"k"` is ______.


Projection vector of `vec"a"` on `vec"b"` is ______.


What is the angle between two vectors `veca` and `vecb` with magnitudes `sqrt(3)` and 2 respectively, such that `veca * vecb = sqrt(6)`


What is the angle between the vectors `hati - 2hatj + 3hatk` and `3hati - 2hatj + hatk`


What is the projection of vector `hati - hatj` on the vector `hati + hatj`.


If `veca` is a non zero vector of magnitude `a` and `lambda` `veca` non-zero scolor, then `lambda` is a unit vector of.


The scalar projection of the vector `3hati - hatj - 2hatk` on the vector `hati + 2hatj - 3hatk` is ______.


Projection of vector `2hati + 3hatj` on the vector `3hati - 2hatj` is ______.


A unit vector `hata` makes equal but acute angles on the coordinate axes. The projection of the vector `hata` on the vector `vecb = 5hati + 7hatj - hatk` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×