Advertisements
Advertisements
प्रश्न
Using vectors show that the points A (−2, 3, 5), B (7, 0, −1) C (−3, −2, −5) and D (3, 4, 7) are such that AB and CD intersect at the point P (1, 2, 3).
उत्तर
We have,
\[\overrightarrow{AP} =\text{ position vector of P - position vector of A}\]
\[ \Rightarrow \overrightarrow{AP} = ( \hat{i} + 2 \hat{j} + 3 \hat{k} ) - ( - 2 \hat{i} + 3 \hat{j} + 5 \hat{k} )\]
\[ = 3 \hat{i} - \hat{j} - 2 \hat{k} \]
\[ \overrightarrow{PB} =\text{ position vector of B - position vector of P}\]
\[ \Rightarrow \overrightarrow{PB} = (7 \hat{i} - 0 \hat{j} - \hat{k} ) - ( \hat{i} + 2 \hat{j} + 3 \hat{k} ) \]
\[ = 6 \hat{i} - 2 \hat{j} - 4 \hat{k} \]
\[\text{ Since }\overrightarrow{PB} = 2 \overrightarrow{AP} .\text{ So, vectors }\overrightarrow{PB} \text{ and }\overrightarrow{AP}\text{ are collinear . But P is a point}\]
\[\text{ common to }\overrightarrow{PB} \text{ and }\overrightarrow{AP} .\]
Hence, P, A, B are collinear points.
\[\text{ Now, }\overrightarrow{CP} = ( - 3 \hat{i} - 2 \hat{j} - 5 \hat{k} ) - ( \hat{i} + 2 \hat{j} + 3 \hat{k} )\]
\[ = ( - 4 \hat{i} - 4 \hat{j} - 8 \hat{k} )\]
\[ \overrightarrow{PD} = ( \hat{i} + 2 \hat{j} + 3 \hat{k} ) - (3 \hat{i} + 4 \hat{j} + 7 \hat{k} )\]
\[ = ( - 2 \hat{i} - 2 \hat{j} - 4 \hat{k} )\]
\[\text{ Thus, } \overrightarrow{CP} = 2 \overrightarrow{PD} . \]
\[\text{ So the vectors }\overrightarrow{CP}\text{ and }\overrightarrow{PD}\text{ are collinear . But P is a common point to }\]
\[ \overrightarrow{CP}\text{ and }\overrightarrow{PD} \]
Hence, C,P,D are collinear points.
Thus A, B, C, D and P are points such that A,P,B and C,P,D are two sets of collinear points.
Hence, AB and CD intersect at point P.
APPEARS IN
संबंधित प्रश्न
Classify the following measures as scalars and vectors:
(i) 15 kg
(ii) 20 kg weight
(iii) 45°
(iv) 10 meters south-east
(v) 50 m/sec2
Answer the following as true or false:
Two collinear vectors are always equal in magnitude.
Answer the following as true or false:
Zero vector is unique.
Answer the following as true or false:
Two collinear vectors having the same magnitude are equal.
If \[\vec{a}\] and \[\vec{b}\] are two non-collinear vectors having the same initial point. What are the vectors represented by \[\vec{a}\] + \[\vec{b}\] and \[\vec{a}\] − \[\vec{b}\].
If \[\vec{a}\] is a vector and m is a scalar such that m \[\vec{a}\] = \[\vec{0}\], then what are the alternatives for m and \[\vec{a}\] ?
Five forces \[\overrightarrow{AB,} \overrightarrow { AC,} \overrightarrow{ AD,}\overrightarrow{AE}\] and \[\overrightarrow{AF}\] act at the vertex of a regular hexagon ABCDEF. Prove that the resultant is 6 \[\overrightarrow{AO,}\] where O is the centre of hexagon.
If \[\vec{a}\], \[\vec{b}\], \[\vec{c}\] are non-zero, non-coplanar vectors, prove that the following vectors are coplanar:
(1) \[5 \vec{a} + 6 \vec{b} + 7 \vec{c,} 7 \vec{a} - 8 \vec{b} + 9 \vec{c}\text{ and }3 \vec{a} + 20 \vec{b} + 5 \vec{c}\]
Prove that the following vectors are coplanar:
\[2 \hat{i} - \hat{j} + \hat{k} , \hat{i} - 3 \hat{j} - 5 \hat{k} \text{ and }3 \hat{i} - 4 \hat{j} - 4 \hat{k}\]
Prove that the following vectors are coplanar:
\[\hat{i} + \hat{j} + \hat{k} , 2 \hat{i} + 3 \hat{j} - \hat{k}\text{ and }- \hat{i} - 2 \hat{j} + 2 \hat{k}\]
If \[\vec{a}\], \[\vec{a}\], \[\vec{c}\] are non-coplanar vectors, prove that the following vectors are non-coplanar: \[\vec{a} + 2 \vec{b} + 3 \vec{c} , 2 \vec{a} + \vec{b} + 3 \vec{c}\text{ and }\vec{a} + \vec{b} + \vec{c}\]
Show that the vectors \[\vec{a,} \vec{b,} \vec{c}\] given by \[\vec{a} = \hat{i} + 2 \hat{j} + 3 \hat{k} , \vec{b} = 2 \hat{i} + \hat{j} + 3 \hat{k}\text{ and }\vec{c} = \hat{i} + \hat{j} + \hat{k}\] are non coplanar.
Express vector \[\vec{d} = 2 \hat{i}-j- 3 \hat{k} , \text{ and }\text { as a linear combination of the vectors } \vec{a,} \vec{b}\text{ and }\vec{c} .\]
The vectors \[\vec{a} \text{ and } \vec{b}\] satisfy the equations \[2 \vec{a} + \vec{b} = \vec{p} \text{ and } \vec{a} + 2 \vec{b} = \vec{q} , \text{ where } \vec{p} = \hat{i} + \hat{j} \text{ and } \vec{q} = \hat{i} - \hat{j} .\] the angle between \[\vec{a} \text{ and } \vec{b}\] then
If \[\vec{a} \cdot \text{i} = \vec{a} \cdot \left( \hat{i} + \hat{j} \right) = \vec{a} \cdot \left( \hat{i} + \hat{j} + \hat{k} \right) = 1,\] then \[\vec{a} =\]
If \[\vec{a} + \vec{b} + \vec{c} = \vec{0} , \left| \vec{a} \right| = 3, \left| \vec{b} \right| = 5, \left| \vec{c} \right| = 7,\] then the angle between \[\vec{a} \text{ and } \vec{b}\] is
The vector (cos α cos β) \[\hat{i}\] + (cos α sin β) \[\hat{j}\] + (sin α) \[\hat{k}\] is a
If the position vectors of P and Q are \[\hat{i} + 3 \hat{j} - 7 \hat{k} \text{ and } 5 \text{i} - 2 \hat{j} + 4 \hat{k}\] then the cosine of the angle between \[\vec{PQ}\] and y-axis is
The vector component of \[\vec{b}\] perpendicular to \[\vec{a}\] is
What is the length of the longer diagonal of the parallelogram constructed on \[5 \vec{a} + 2 \vec{b} \text{ and } \vec{a} - 3 \vec{b}\] if it is given that \[\left| \vec{a} \right| = 2\sqrt{2}, \left| \vec{b} \right| = 3\] and the angle between \[\vec{a} \text{ and } \vec{b}\] is π/4?
If \[\vec{a}\] is a non-zero vector of magnitude 'a' and λ is a non-zero scalar, then λ \[\vec{a}\] is a unit vector if
If θ is the angle between two vectors `veca` and `vecb` then, `veca * vecb` ≥ 0, only when
If \[\vec{a} , \vec{b} , \vec{c}\] are any three mutually perpendicular vectors of equal magnitude a, then \[\left| \vec{a} + \vec{b} + \vec{c} \right|\] is equal to
If the vectors \[3 \hat{i} + \lambda \hat{j} + \hat{k} \text{ and } 2 \hat{i} - \hat{j} + 8 \hat{k}\] are perpendicular, then λ is equal to
The projection of the vector \[\hat{i} + \hat{j} + \hat{k}\] along the vector of \[\hat{j}\] is
The vectors \[2 \hat{i} + 3 \hat{j} - 4 \hat{k}\] and \[a \hat{i} + \hat{b} j + c \hat{k}\] are perpendicular if
If \[\left| \vec{a} \right| = \left| \vec{b} \right|, \text{ then } \left( \vec{a} + \vec{b} \right) \cdot \left( \vec{a} - \vec{b} \right) =\]
If \[\vec{a} \text{ and } \vec{b}\] are unit vectors inclined at an angle θ, then the value of \[\left| \vec{a} - \vec{b} \right|\]
If \[\vec{a} \text{ and } \vec{b}\] are two unit vectors inclined at an angle θ, such that \[\left| \vec{a} + \vec{b} \right| < 1,\] then
Let \[\vec{a} , \vec{b} , \vec{c}\] be three unit vectors, such that \[\left| \vec{a} + \vec{b} + \vec{c} \right|\] =1 and \[\vec{a}\] is perpendicular to \[\vec{b}\] If \[\vec{c}\] makes angles α and β with \[\vec{a} and \vec{b}\] respectively, then cos α + cos β =
If θ is an acute angle and the vector (sin θ) \[\text{i}\] + (cos θ) \[\hat{j}\] is perpendicular to the vector \[\hat{i} - \sqrt{3} \hat{j} ,\] then θ =
If \[\vec{a} \text{ and }\vec{b}\] be two unit vectors and θ the angle between them, then \[\vec{a} + \vec{b}\] is a unit vector if θ =