मराठी

Using Vectors Show that the Points a (−2, 3, 5), B (7, 0, −1) C (−3, −2, −5) and D (3, 4, 7) Are Such that Ab and Cd Intersect at the Point P (1, 2, 3). - Mathematics

Advertisements
Advertisements

प्रश्न

Using vectors show that the points A (−2, 3, 5), B (7, 0, −1) C (−3, −2, −5) and D (3, 4, 7) are such that AB and CD intersect at the point P (1, 2, 3).

बेरीज

उत्तर

We have,
\[\overrightarrow{AP} =\text{ position vector of P - position vector of A}\]
\[ \Rightarrow \overrightarrow{AP} = ( \hat{i} + 2 \hat{j} + 3 \hat{k} ) - ( - 2 \hat{i} + 3 \hat{j} + 5 \hat{k} )\]
\[ = 3 \hat{i} - \hat{j} - 2 \hat{k} \]
\[ \overrightarrow{PB} =\text{ position vector of B - position vector of P}\]
\[ \Rightarrow \overrightarrow{PB} = (7 \hat{i} - 0 \hat{j} - \hat{k} ) - ( \hat{i} + 2 \hat{j} + 3 \hat{k} ) \]
\[ = 6 \hat{i} - 2 \hat{j} - 4 \hat{k} \]
\[\text{ Since }\overrightarrow{PB} = 2 \overrightarrow{AP} .\text{ So, vectors }\overrightarrow{PB} \text{ and }\overrightarrow{AP}\text{ are collinear . But P is a point}\]
\[\text{ common to }\overrightarrow{PB} \text{ and }\overrightarrow{AP} .\]
Hence, P, A, B are collinear points.
\[\text{ Now, }\overrightarrow{CP} = ( - 3 \hat{i} - 2 \hat{j} - 5 \hat{k} ) - ( \hat{i} + 2 \hat{j} + 3 \hat{k} )\]
\[ = ( - 4 \hat{i} - 4 \hat{j} - 8 \hat{k} )\]
\[ \overrightarrow{PD} = ( \hat{i} + 2 \hat{j} + 3 \hat{k} ) - (3 \hat{i} + 4 \hat{j} + 7 \hat{k} )\]
\[ = ( - 2 \hat{i} - 2 \hat{j} - 4 \hat{k} )\]
\[\text{ Thus, } \overrightarrow{CP} = 2 \overrightarrow{PD} . \]
\[\text{ So the vectors }\overrightarrow{CP}\text{ and }\overrightarrow{PD}\text{ are collinear . But P is a common point to }\]
\[ \overrightarrow{CP}\text{ and }\overrightarrow{PD} \]
Hence, C,P,D are collinear points.
Thus A, B, C, D and P are points such that A,P,B and C,P,D are two sets of collinear points.
Hence, AB and CD intersect at point P.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 23: Algebra of Vectors - Exercise 23.7 [पृष्ठ ६१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 23 Algebra of Vectors
Exercise 23.7 | Q 12 | पृष्ठ ६१

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Classify the following measures as scalars and vectors:
(i) 15 kg
(ii) 20 kg weight
(iii) 45°
(iv) 10 meters south-east
(v) 50 m/sec2


Classify the following as scalars and vector quantities:
(i) Time period
(ii) Distance
(iii) displacement
(iv) Force
(v) Work
(vi) Velocity
(vii) Acceleration


Answer the following as true or false:
Two vectors having same magnitude are collinear.


Five forces \[\overrightarrow{AB,}   \overrightarrow { AC,} \overrightarrow{ AD,}\overrightarrow{AE}\] and \[\overrightarrow{AF}\] act at the vertex of a regular hexagon ABCDEF. Prove that the resultant is 6 \[\overrightarrow{AO,}\] where O is the centre of hexagon.


If \[\vec{a}\], \[\vec{b}\], \[\vec{c}\] are non-zero, non-coplanar vectors, prove that the following vectors are coplanar:
(1) \[5 \vec{a} + 6 \vec{b} + 7 \vec{c,} 7 \vec{a} - 8 \vec{b} + 9 \vec{c}\text{ and }3 \vec{a} + 20 \vec{b} + 5 \vec{c}\]

(2) \[\vec{a} - 2 \vec{b} + 3 \vec{c} , - 3 \vec{b} + 5 \vec{c}\text{ and }- 2 \vec{a} + 3 \vec{b} - 4 \vec{c}\]

Prove that the following vectors are coplanar:
\[2 \hat{i} - \hat{j} + \hat{k} , \hat{i} - 3 \hat{j} - 5 \hat{k} \text{ and }3 \hat{i} - 4 \hat{j} - 4 \hat{k}\]


Prove that the following vectors are coplanar:
\[\hat{i} + \hat{j} + \hat{k} , 2 \hat{i} + 3 \hat{j} - \hat{k}\text{ and }- \hat{i} - 2 \hat{j} + 2 \hat{k}\]


Prove that the following vectors are non-coplanar:

\[\hat{i} + 2 \hat{j} + 3 \hat{k} , 2 \hat{i} + \hat{j} + 3 \hat{k}\text{ and }\hat{i} + \hat{j} + \hat{k}\]

Show that the vectors \[\vec{a,} \vec{b,} \vec{c}\] given by \[\vec{a} = \hat{i} + 2 \hat{j} + 3 \hat{k} , \vec{b} = 2 \hat{i} + \hat{j} + 3 \hat{k}\text{ and }\vec{c} = \hat{i} + \hat{j} + \hat{k}\]  are non coplanar.
Express vector \[\vec{d} = 2 \hat{i}-j-  3 \hat{k} , \text{ and }\text { as  a linear combination of the vectors } \vec{a,} \vec{b}\text{ and }\vec{c} .\]


The vectors \[\vec{a} \text{ and } \vec{b}\] satisfy the equations \[2 \vec{a} + \vec{b} = \vec{p} \text{ and } \vec{a} + 2 \vec{b} = \vec{q} , \text{ where } \vec{p} = \hat{i} + \hat{j} \text{ and } \vec{q} = \hat{i} - \hat{j} .\] the angle between \[\vec{a} \text{ and } \vec{b}\] then 


If \[\vec{a} \cdot \text{i} = \vec{a} \cdot \left( \hat{i} + \hat{j} \right) = \vec{a} \cdot \left( \hat{i} + \hat{j} + \hat{k} \right) = 1,\]  then \[\vec{a} =\] 


If \[\vec{a} + \vec{b} + \vec{c} = \vec{0} , \left| \vec{a} \right| = 3, \left| \vec{b} \right| = 5, \left| \vec{c} \right| = 7,\] then the angle between \[\vec{a} \text{ and } \vec{b}\] is 


The vector (cos α cos β) \[\hat{i}\] + (cos α sin β) \[\hat{j}\] + (sin α) \[\hat{k}\]  is a 


If the position vectors of P and Q are \[\hat{i} + 3 \hat{j} - 7 \hat{k} \text{ and } 5 \text{i} - 2 \hat{j} + 4 \hat{k}\] then the cosine of the angle between \[\vec{PQ}\] and y-axis is 


The vector component of \[\vec{b}\] perpendicular to \[\vec{a}\] is 


If \[\vec{a}\] is a non-zero vector of magnitude 'a' and λ is a non-zero scalar, then λ \[\vec{a}\] is a unit vector if 


If θ is the angle between two vectors `veca` and `vecb` then, `veca * vecb` ≥ 0, only when


If \[\vec{a} , \vec{b} , \vec{c}\] are any three mutually perpendicular vectors of equal magnitude a, then \[\left| \vec{a} + \vec{b} + \vec{c} \right|\] is equal to 


If the vectors \[3 \hat{i} + \lambda \hat{j} + \hat{k} \text{ and } 2 \hat{i} - \hat{j} + 8 \hat{k}\] are perpendicular, then λ is equal to 


The projection of the vector \[\hat{i} + \hat{j} + \hat{k}\] along the vector of \[\hat{j}\] is


The vectors \[2 \hat{i} + 3 \hat{j} - 4 \hat{k}\] and \[a \hat{i} + \hat{b} j + c \hat{k}\] are perpendicular if 


If \[\left| \vec{a} \right| = \left| \vec{b} \right|, \text{ then } \left( \vec{a} + \vec{b} \right) \cdot \left( \vec{a} - \vec{b} \right) =\]


If \[\vec{a} \text{ and } \vec{b}\] are unit vectors inclined at an angle θ, then the value of \[\left| \vec{a} - \vec{b} \right|\] 


Let \[\vec{a} , \vec{b} , \vec{c}\] be three unit vectors, such that \[\left| \vec{a} + \vec{b} + \vec{c} \right|\] =1 and \[\vec{a}\] is perpendicular to \[\vec{b}\]  If \[\vec{c}\] makes angles α and β with \[\vec{a} and \vec{b}\] respectively, then cos α + cos β =


The orthogonal projection of \[\vec{a} \text{ on } \vec{b}\] is 


If \[\vec{a} \text{ and }\vec{b}\] be two unit vectors and θ the angle between them, then \[\vec{a} + \vec{b}\] is a unit vector if θ = 


In Figure ABCD is a regular hexagon, which vectors are:
(i) Collinear
(ii) Equal
(iii) Coinitial
(iv) Collinear but not equal.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×