Advertisements
Advertisements
Question
Using vectors show that the points A (−2, 3, 5), B (7, 0, −1) C (−3, −2, −5) and D (3, 4, 7) are such that AB and CD intersect at the point P (1, 2, 3).
Solution
We have,
\[\overrightarrow{AP} =\text{ position vector of P - position vector of A}\]
\[ \Rightarrow \overrightarrow{AP} = ( \hat{i} + 2 \hat{j} + 3 \hat{k} ) - ( - 2 \hat{i} + 3 \hat{j} + 5 \hat{k} )\]
\[ = 3 \hat{i} - \hat{j} - 2 \hat{k} \]
\[ \overrightarrow{PB} =\text{ position vector of B - position vector of P}\]
\[ \Rightarrow \overrightarrow{PB} = (7 \hat{i} - 0 \hat{j} - \hat{k} ) - ( \hat{i} + 2 \hat{j} + 3 \hat{k} ) \]
\[ = 6 \hat{i} - 2 \hat{j} - 4 \hat{k} \]
\[\text{ Since }\overrightarrow{PB} = 2 \overrightarrow{AP} .\text{ So, vectors }\overrightarrow{PB} \text{ and }\overrightarrow{AP}\text{ are collinear . But P is a point}\]
\[\text{ common to }\overrightarrow{PB} \text{ and }\overrightarrow{AP} .\]
Hence, P, A, B are collinear points.
\[\text{ Now, }\overrightarrow{CP} = ( - 3 \hat{i} - 2 \hat{j} - 5 \hat{k} ) - ( \hat{i} + 2 \hat{j} + 3 \hat{k} )\]
\[ = ( - 4 \hat{i} - 4 \hat{j} - 8 \hat{k} )\]
\[ \overrightarrow{PD} = ( \hat{i} + 2 \hat{j} + 3 \hat{k} ) - (3 \hat{i} + 4 \hat{j} + 7 \hat{k} )\]
\[ = ( - 2 \hat{i} - 2 \hat{j} - 4 \hat{k} )\]
\[\text{ Thus, } \overrightarrow{CP} = 2 \overrightarrow{PD} . \]
\[\text{ So the vectors }\overrightarrow{CP}\text{ and }\overrightarrow{PD}\text{ are collinear . But P is a common point to }\]
\[ \overrightarrow{CP}\text{ and }\overrightarrow{PD} \]
Hence, C,P,D are collinear points.
Thus A, B, C, D and P are points such that A,P,B and C,P,D are two sets of collinear points.
Hence, AB and CD intersect at point P.
APPEARS IN
RELATED QUESTIONS
Answer the following as true or false:
\[\vec{a}\] and \[\vec{a}\] are collinear.
Answer the following as true or false:
Two collinear vectors are always equal in magnitude.
Answer the following as true or false:
Two collinear vectors having the same magnitude are equal.
If \[\vec{a}\] and \[\vec{b}\] are two non-collinear vectors having the same initial point. What are the vectors represented by \[\vec{a}\] + \[\vec{b}\] and \[\vec{a}\] − \[\vec{b}\].
If \[\vec{a}\] is a vector and m is a scalar such that m \[\vec{a}\] = \[\vec{0}\], then what are the alternatives for m and \[\vec{a}\] ?
Five forces \[\overrightarrow{AB,} \overrightarrow { AC,} \overrightarrow{ AD,}\overrightarrow{AE}\] and \[\overrightarrow{AF}\] act at the vertex of a regular hexagon ABCDEF. Prove that the resultant is 6 \[\overrightarrow{AO,}\] where O is the centre of hexagon.
If O is a point in space, ABC is a triangle and D, E, F are the mid-points of the sides BC, CA and AB respectively of the triangle, prove that \[\vec{OA} + \vec{OB} + \vec{OC} = \vec{OD} + \vec{OE} + \vec{OF}\]
Show that the points (3, 4), (−5, 16) and (5, 1) are collinear.
Show that the points A (1, −2, −8), B (5, 0, −2) and C (11, 3, 7) are collinear, and find the ratio in which B divides AC.
Prove that the following vectors are coplanar:
\[2 \hat{i} - \hat{j} + \hat{k} , \hat{i} - 3 \hat{j} - 5 \hat{k} \text{ and }3 \hat{i} - 4 \hat{j} - 4 \hat{k}\]
Show that the vectors \[\vec{a,} \vec{b,} \vec{c}\] given by \[\vec{a} = \hat{i} + 2 \hat{j} + 3 \hat{k} , \vec{b} = 2 \hat{i} + \hat{j} + 3 \hat{k}\text{ and }\vec{c} = \hat{i} + \hat{j} + \hat{k}\] are non coplanar.
Express vector \[\vec{d} = 2 \hat{i}-j- 3 \hat{k} , \text{ and }\text { as a linear combination of the vectors } \vec{a,} \vec{b}\text{ and }\vec{c} .\]
The vectors \[\vec{a} \text{ and } \vec{b}\] satisfy the equations \[2 \vec{a} + \vec{b} = \vec{p} \text{ and } \vec{a} + 2 \vec{b} = \vec{q} , \text{ where } \vec{p} = \hat{i} + \hat{j} \text{ and } \vec{q} = \hat{i} - \hat{j} .\] the angle between \[\vec{a} \text{ and } \vec{b}\] then
Let \[\vec{a} \text{ and } \vec{b}\] be two unit vectors and α be the angle between them. Then, \[\vec{a} + \vec{b}\] is a unit vector if
If \[\vec{a} + \vec{b} + \vec{c} = \vec{0} , \left| \vec{a} \right| = 3, \left| \vec{b} \right| = 5, \left| \vec{c} \right| = 7,\] then the angle between \[\vec{a} \text{ and } \vec{b}\] is
The vector (cos α cos β) \[\hat{i}\] + (cos α sin β) \[\hat{j}\] + (sin α) \[\hat{k}\] is a
If the position vectors of P and Q are \[\hat{i} + 3 \hat{j} - 7 \hat{k} \text{ and } 5 \text{i} - 2 \hat{j} + 4 \hat{k}\] then the cosine of the angle between \[\vec{PQ}\] and y-axis is
If \[\vec{a} \text{ and } \vec{b}\] are unit vectors, then which of the following values of \[\vec{a} . \vec{b}\] is not possible?
If the vectors `hati - 2xhatj + 3 yhatk and hati + 2xhatj - 3yhatk` are perpendicular, then the locus of (x, y) is ______.
What is the length of the longer diagonal of the parallelogram constructed on \[5 \vec{a} + 2 \vec{b} \text{ and } \vec{a} - 3 \vec{b}\] if it is given that \[\left| \vec{a} \right| = 2\sqrt{2}, \left| \vec{b} \right| = 3\] and the angle between \[\vec{a} \text{ and } \vec{b}\] is π/4?
If θ is the angle between two vectors `veca` and `vecb` then, `veca * vecb` ≥ 0, only when
The projection of the vector \[\hat{i} + \hat{j} + \hat{k}\] along the vector of \[\hat{j}\] is
If \[\vec{a} \text{ and } \vec{b}\] are unit vectors inclined at an angle θ, then the value of \[\left| \vec{a} - \vec{b} \right|\]
If \[\vec{a} \text{ and } \vec{b}\] are unit vectors, then the greatest value of \[\sqrt{3}\left| \vec{a} + \vec{b} \right| + \left| \vec{a} - \vec{b} \right|\]
If \[\vec{a} \text{ and } \vec{b}\] are two unit vectors inclined at an angle θ, such that \[\left| \vec{a} + \vec{b} \right| < 1,\] then
The orthogonal projection of \[\vec{a} \text{ on } \vec{b}\] is
If θ is an acute angle and the vector (sin θ) \[\text{i}\] + (cos θ) \[\hat{j}\] is perpendicular to the vector \[\hat{i} - \sqrt{3} \hat{j} ,\] then θ =
If \[\vec{a} \text{ and }\vec{b}\] be two unit vectors and θ the angle between them, then \[\vec{a} + \vec{b}\] is a unit vector if θ =
In Figure ABCD is a regular hexagon, which vectors are:
(i) Collinear
(ii) Equal
(iii) Coinitial
(iv) Collinear but not equal.