English

Show that the Vectors → a , → B , → C Given by 3 ^ K and J + ^ K Are Non-coplanar. Express Vector ^ K as a Linear Combination of the Vectors → a , → B and → C . - Mathematics

Advertisements
Advertisements

Question

Show that the vectors \[\vec{a,} \vec{b,} \vec{c}\] given by \[\vec{a} = \hat{i} + 2 \hat{j} + 3 \hat{k} , \vec{b} = 2 \hat{i} + \hat{j} + 3 \hat{k}\text{ and }\vec{c} = \hat{i} + \hat{j} + \hat{k}\]  are non coplanar.
Express vector \[\vec{d} = 2 \hat{i}-j-  3 \hat{k} , \text{ and }\text { as  a linear combination of the vectors } \vec{a,} \vec{b}\text{ and }\vec{c} .\]

Sum

Solution

Let the given vectors \[\vec{a} = \hat{i} + 2 \hat{j} + 3 \hat{k} , \vec{b} = 2 \hat{i} + \hat{j} + 3 \hat{k}\] and \[\vec{c} = \hat{i} + {\hat{j} + {\hat{k}}^\dot{}}\] are coplanar. Then one of the vector is expressible as a linear combination of the other two. 
Let, \[\hat{i} + 2 \hat{j} + 3 \hat{k} = x \left( 2 \hat{i} + \hat{j} + 3 \hat{k} \right) + y \left( \hat{i} + \hat{j} + \hat{k} \right) . \]
\[ = \hat{i} \left( 2x + y \right) + \hat{j} \left( x + y \right) + \hat{k} \left( 3x + y \right) .\]
\[\Rightarrow 2x + y = 1, x + y = 2, 3x + y = 3 .\]
On solving the first two equations we get \[x = - 1, y = 3\].
Clearly the values of x, y  does not satisfy the third equation.
Hence the given vectors are non-coplanar.
Now,
\[\vec{d} = 2 \hat{i} - \hat{j} - 3 \hat{k}\] which can be expressed as
\[2 \hat{i} - \hat{j} - 3 \hat{k} = x( \hat{i} + 2 \hat{j} + 3 \hat{k} ) + y(2 \hat{i} + \hat{j} + 3 \hat{k} ) + z( \hat{i} + \hat{j} + \hat{k} ) .\]
\[\hat{i} (x + 2y + z) + \hat{j} (2x + y + z) + \hat{k} (3x + 3y + z)\]
\[\Rightarrow x + 2y + z = 2, 2x + y + z = - 1, 3x + 3y + z = - 3 . \]
\[ \Rightarrow x = - \frac{8}{3}, y = \frac{1}{3}, z = 4\]
Hence, \[\vec{d}\] is expressible as the linear combination of \[\vec{a} , \vec{b}\] and \[\vec{c}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 23: Algebra of Vectors - Exercise 23.8 [Page 66]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 23 Algebra of Vectors
Exercise 23.8 | Q 8 | Page 66

Video TutorialsVIEW ALL [2]

RELATED QUESTIONS

Answer the following as true or false:
\[\vec{a}\] and \[\vec{a}\]  are collinear.


Answer the following as true or false:
Two vectors having same magnitude are collinear.


Answer the following as true or false:
Two collinear vectors having the same magnitude are equal.


If \[\vec{a}\] and \[\vec{b}\] are two non-collinear vectors having the same initial point. What are the vectors represented by \[\vec{a}\] + \[\vec{b}\]  and \[\vec{a}\] − \[\vec{b}\].

 


Five forces \[\overrightarrow{AB,}   \overrightarrow { AC,} \overrightarrow{ AD,}\overrightarrow{AE}\] and \[\overrightarrow{AF}\] act at the vertex of a regular hexagon ABCDEF. Prove that the resultant is 6 \[\overrightarrow{AO,}\] where O is the centre of hexagon.


If the vectors \[\vec{a} = 2 \hat{i} - 3 \hat{j}\] and \[\vec{b} = - 6 \hat{i} + m \hat{j}\] are collinear, find the value of m.


Using vectors show that the points A (−2, 3, 5), B (7, 0, −1) C (−3, −2, −5) and D (3, 4, 7) are such that AB and CD intersect at the point P (1, 2, 3).


If \[\vec{a}\], \[\vec{b}\], \[\vec{c}\] are non-zero, non-coplanar vectors, prove that the following vectors are coplanar:
(1) \[5 \vec{a} + 6 \vec{b} + 7 \vec{c,} 7 \vec{a} - 8 \vec{b} + 9 \vec{c}\text{ and }3 \vec{a} + 20 \vec{b} + 5 \vec{c}\]

(2) \[\vec{a} - 2 \vec{b} + 3 \vec{c} , - 3 \vec{b} + 5 \vec{c}\text{ and }- 2 \vec{a} + 3 \vec{b} - 4 \vec{c}\]

Prove that the following vectors are coplanar:
\[\hat{i} + \hat{j} + \hat{k} , 2 \hat{i} + 3 \hat{j} - \hat{k}\text{ and }- \hat{i} - 2 \hat{j} + 2 \hat{k}\]


If \[\vec{a} + \vec{b} + \vec{c} = \vec{0} , \left| \vec{a} \right| = 3, \left| \vec{b} \right| = 5, \left| \vec{c} \right| = 7,\] then the angle between \[\vec{a} \text{ and } \vec{b}\] is 


The vector (cos α cos β) \[\hat{i}\] + (cos α sin β) \[\hat{j}\] + (sin α) \[\hat{k}\]  is a 


The vector component of \[\vec{b}\] perpendicular to \[\vec{a}\] is 


If \[\vec{a}\] is a non-zero vector of magnitude 'a' and λ is a non-zero scalar, then λ \[\vec{a}\] is a unit vector if 


If θ is the angle between two vectors `veca` and `vecb` then, `veca * vecb` ≥ 0, only when


The values of x for which the angle between \[\vec{a} = 2 x^2 \hat{i} + 4x \hat{j} + \hat{k} , \vec{b} = 7 \hat{i} - 2 \hat{j} + x \hat{k}\]  is obtuse and the angle between \[\vec{b}\] and the z-axis is acute and less than \[\frac{\pi}{6}\]  are


If \[\vec{a} , \vec{b} , \vec{c}\] are any three mutually perpendicular vectors of equal magnitude a, then \[\left| \vec{a} + \vec{b} + \vec{c} \right|\] is equal to 


If the vectors \[3 \hat{i} + \lambda \hat{j} + \hat{k} \text{ and } 2 \hat{i} - \hat{j} + 8 \hat{k}\] are perpendicular, then λ is equal to 


The projection of the vector \[\hat{i} + \hat{j} + \hat{k}\] along the vector of \[\hat{j}\] is


The vectors \[2 \hat{i} + 3 \hat{j} - 4 \hat{k}\] and \[a \hat{i} + \hat{b} j + c \hat{k}\] are perpendicular if 


If \[\left| \vec{a} \right| = \left| \vec{b} \right|, \text{ then } \left( \vec{a} + \vec{b} \right) \cdot \left( \vec{a} - \vec{b} \right) =\]


If \[\vec{a} \text{ and } \vec{b}\] are unit vectors inclined at an angle θ, then the value of \[\left| \vec{a} - \vec{b} \right|\] 


If the angle between the vectors \[x \hat{i} + 3 \hat{j}- 7 \hat{k} \text{ and } x \hat{i} - x \hat{j} + 4 \hat{k}\] is acute, then x lies in the interval 


The orthogonal projection of \[\vec{a} \text{ on } \vec{b}\] is 


If \[\vec{a} \text{ and }\vec{b}\] be two unit vectors and θ the angle between them, then \[\vec{a} + \vec{b}\] is a unit vector if θ = 


In Figure ABCD is a regular hexagon, which vectors are:
(i) Collinear
(ii) Equal
(iii) Coinitial
(iv) Collinear but not equal.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×