English

Five Forces → a B , → a C , → a D , → a E and → a F Act at the Vertex of a Regular Hexagon Abcdef. Prove that the Resultant is 6 → a O , Where O is the Centre of Hexagon. - Mathematics

Advertisements
Advertisements

Question

Five forces \[\overrightarrow{AB,}   \overrightarrow { AC,} \overrightarrow{ AD,}\overrightarrow{AE}\] and \[\overrightarrow{AF}\] act at the vertex of a regular hexagon ABCDEF. Prove that the resultant is 6 \[\overrightarrow{AO,}\] where O is the centre of hexagon.

Sum

Solution


\[\overrightarrow{AB} + \overrightarrow {AC} + \overrightarrow{AD} + \overrightarrow{AE} + \overrightarrow{AF}\]
Consider ∆ADE,
\[\begin{array}{l}\overrightarrow{AD} + \overrightarrow{DE} + \overrightarrow{EA} = 0 \\ \overrightarrow{AD} + \overrightarrow{DE} = \overrightarrow{AE} \\ 2 \overrightarrow{AO} + \left( - \overrightarrow{AB} \right) =\overrightarrow{AE} \left[ \overrightarrow{AD} = 2 \overrightarrow{AO} \hspace{0.167em} \hspace{0.167em}\text{ and }ED ||\hspace{0.167em}AB \hspace{0.167em} \hspace{0.167em} \overrightarrow{DE} = - \overrightarrow{AB} \right] \\ \therefore \hspace{0.167em} \hspace{0.167em} \overrightarrow{AE} + \overrightarrow{AB} = 2 \overrightarrow{AO} . . . . . (1)\end{array}\]
Now, consider ∆ADC
\[\overrightarrow{AC} + \overrightarrow{CD} + \overrightarrow{DA} = 0\]
\[ \overrightarrow{AC} + \overrightarrow{CD} = \overrightarrow{AD} \left[ \because \overrightarrow{CD} = \overrightarrow{AF} \right]\]
\[ \overrightarrow{AC} + \overrightarrow{AF} = 2 \overrightarrow{AO} . . . . . \left( 2 \right)\]
Using (1) and (2),

\[\overrightarrow{AB} +\overrightarrow{AE} + \overrightarrow{AC} +\overrightarrow{AF}+\overrightarrow{AD} \]
\[ 2\overrightarrow{AO} + 2\overrightarrow{AO} + 2\overrightarrow{AO}\]
 = \[6\overrightarrow{AO}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 23: Algebra of Vectors - Exercise 23.2 [Page 17]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 23 Algebra of Vectors
Exercise 23.2 | Q 10 | Page 17

Video TutorialsVIEW ALL [2]

RELATED QUESTIONS

Classify the following as scalars and vector quantities:
(i) Time period
(ii) Distance
(iii) displacement
(iv) Force
(v) Work
(vi) Velocity
(vii) Acceleration


Answer the following as true or false:
Two collinear vectors are always equal in magnitude.


Answer the following as true or false:
Zero vector is unique.


If \[\vec{a}\] is a vector and m is a scalar such that m \[\vec{a}\] = \[\vec{0}\], then what are the alternatives for m and \[\vec{a}\] ?

 


If O is a point in space, ABC is a triangle and D, E, F are the mid-points of the sides BC, CA and AB respectively of the triangle, prove that \[\vec{OA} + \vec{OB} + \vec{OC} = \vec{OD} + \vec{OE} + \vec{OF}\]


Show that the points (3, 4), (−5, 16) and (5, 1) are collinear.


Show that the points A (1, −2, −8), B (5, 0, −2) and C (11, 3, 7) are collinear, and find the ratio in which B divides AC.


Using vectors show that the points A (−2, 3, 5), B (7, 0, −1) C (−3, −2, −5) and D (3, 4, 7) are such that AB and CD intersect at the point P (1, 2, 3).


Prove that the following vectors are coplanar:
\[\hat{i} + \hat{j} + \hat{k} , 2 \hat{i} + 3 \hat{j} - \hat{k}\text{ and }- \hat{i} - 2 \hat{j} + 2 \hat{k}\]


Prove that the following vectors are non-coplanar:

\[\hat{i} + 2 \hat{j} + 3 \hat{k} , 2 \hat{i} + \hat{j} + 3 \hat{k}\text{ and }\hat{i} + \hat{j} + \hat{k}\]

If \[\vec{a}\], \[\vec{a}\], \[\vec{c}\] are non-coplanar vectors, prove that the following vectors are non-coplanar: \[2 \vec{a} - \vec{b} + 3 \vec{c} , \vec{a} + \vec{b} - 2 \vec{c}\text{ and }\vec{a} + \vec{b} - 3 \vec{c}\]


If \[\vec{a}\], \[\vec{a}\], \[\vec{c}\] are non-coplanar vectors, prove that the following vectors are non-coplanar: \[\vec{a} + 2 \vec{b} + 3 \vec{c} , 2 \vec{a} + \vec{b} + 3 \vec{c}\text{ and }\vec{a} + \vec{b} + \vec{c}\]


The vectors \[\vec{a} \text{ and } \vec{b}\] satisfy the equations \[2 \vec{a} + \vec{b} = \vec{p} \text{ and } \vec{a} + 2 \vec{b} = \vec{q} , \text{ where } \vec{p} = \hat{i} + \hat{j} \text{ and } \vec{q} = \hat{i} - \hat{j} .\] the angle between \[\vec{a} \text{ and } \vec{b}\] then 


Let \[\vec{a} \text{ and } \vec{b}\]  be two unit vectors and α be the angle between them. Then, \[\vec{a} + \vec{b}\] is a unit vector if 


If \[\vec{a} + \vec{b} + \vec{c} = \vec{0} , \left| \vec{a} \right| = 3, \left| \vec{b} \right| = 5, \left| \vec{c} \right| = 7,\] then the angle between \[\vec{a} \text{ and } \vec{b}\] is 


If the position vectors of P and Q are \[\hat{i} + 3 \hat{j} - 7 \hat{k} \text{ and } 5 \text{i} - 2 \hat{j} + 4 \hat{k}\] then the cosine of the angle between \[\vec{PQ}\] and y-axis is 


If \[\vec{a} \text{ and } \vec{b}\] are unit vectors, then which of the following values of \[\vec{a} . \vec{b}\] is not possible? 


The vector component of \[\vec{b}\] perpendicular to \[\vec{a}\] is 


What is the length of the longer diagonal of the parallelogram constructed on \[5 \vec{a} + 2 \vec{b} \text{ and } \vec{a} - 3 \vec{b}\] if it is given that \[\left| \vec{a} \right| = 2\sqrt{2}, \left| \vec{b} \right| = 3\] and the angle between \[\vec{a} \text{ and } \vec{b}\] is π/4? 


If \[\vec{a}\] is a non-zero vector of magnitude 'a' and λ is a non-zero scalar, then λ \[\vec{a}\] is a unit vector if 


If θ is the angle between two vectors `veca` and `vecb` then, `veca * vecb` ≥ 0, only when


The values of x for which the angle between \[\vec{a} = 2 x^2 \hat{i} + 4x \hat{j} + \hat{k} , \vec{b} = 7 \hat{i} - 2 \hat{j} + x \hat{k}\]  is obtuse and the angle between \[\vec{b}\] and the z-axis is acute and less than \[\frac{\pi}{6}\]  are


If the vectors \[3 \hat{i} + \lambda \hat{j} + \hat{k} \text{ and } 2 \hat{i} - \hat{j} + 8 \hat{k}\] are perpendicular, then λ is equal to 


The projection of the vector \[\hat{i} + \hat{j} + \hat{k}\] along the vector of \[\hat{j}\] is


The vectors \[2 \hat{i} + 3 \hat{j} - 4 \hat{k}\] and \[a \hat{i} + \hat{b} j + c \hat{k}\] are perpendicular if 


If \[\vec{a} \text{ and } \vec{b}\] are unit vectors, then the greatest value of \[\sqrt{3}\left| \vec{a} + \vec{b} \right| + \left| \vec{a} - \vec{b} \right|\] 


If \[\vec{a} \text{ and } \vec{b}\] are two unit vectors inclined at an angle θ, such that \[\left| \vec{a} + \vec{b} \right| < 1,\] then 


Let \[\vec{a} , \vec{b} , \vec{c}\] be three unit vectors, such that \[\left| \vec{a} + \vec{b} + \vec{c} \right|\] =1 and \[\vec{a}\] is perpendicular to \[\vec{b}\]  If \[\vec{c}\] makes angles α and β with \[\vec{a} and \vec{b}\] respectively, then cos α + cos β =


If θ is an acute angle and the vector (sin θ) \[\text{i}\]  + (cos θ) \[\hat{j}\]  is perpendicular to the vector \[\hat{i} - \sqrt{3} \hat{j} ,\] then θ = 


If \[\vec{a} \text{ and }\vec{b}\] be two unit vectors and θ the angle between them, then \[\vec{a} + \vec{b}\] is a unit vector if θ = 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×