English

The Vectors → a and → B Satisfy the Equations 2 → a + → B = → P and → a + 2 → B = → Q , Where → P = ^ I + ^ J and → Q = ^ I − ^ J . the Angle Between → a and → B Then - Mathematics

Advertisements
Advertisements

Question

The vectors \[\vec{a} \text{ and } \vec{b}\] satisfy the equations \[2 \vec{a} + \vec{b} = \vec{p} \text{ and } \vec{a} + 2 \vec{b} = \vec{q} , \text{ where } \vec{p} = \hat{i} + \hat{j} \text{ and } \vec{q} = \hat{i} - \hat{j} .\] the angle between \[\vec{a} \text{ and } \vec{b}\] then 

Options

  •  \[\cos \theta = \frac{4}{5}\]

  •  \[\sin \theta = \frac{1}{\sqrt{2}}\]

  •  \[\cos \theta = - \frac{4}{5}\]

  •  \[\cos \theta = - \frac{3}{5}\] 

MCQ
Sum

Solution

 \[\cos \theta = - \frac{4}{5}\]  

\[\text{ Given that }\]

\[2 \vec{a} + \vec{b} = \vec{p} . . . \left( 1 \right)\]

\[ \vec{a} + 2 \vec{b} = \vec{q} . . . \left( 2 \right)\]

\[\text{ Solving these two we get }\]

\[ \vec{a} = \frac{2 \vec{p} - \vec{q}}{3}, \vec{b} = \frac{2 \vec{q} - \vec{p}}{3}\]

\[\text{ And we have }\]

\[ \vec{p} = \hat{i} + \hat{j} \text{ and } \vec{q} = \hat{i} - \hat{j} \]

\[\text{ Substituting the values of } \vec{p} \text{ and } \vec{q,} \text{ we get }\]

\[ \vec{a} = \frac{2 \vec{p} - \vec{q}}{3} = \frac{2\left( \hat{i} + \hat{j} \right) - \left( \hat{i}- \hat{j} \right)}{3} = \frac{\hat{i} + 3 \hat{j}}{3}\]

\[ \Rightarrow \left| \vec{a} \right| = \frac{1}{3}\sqrt{1 + 9} = \frac{\sqrt{10}}{3}\]

\[ \vec{b} = \frac{2 \vec{q} - \vec{p}}{3} = \frac{2\left( \hat{i} - \hat{j} \right) - \left( \hat{i} + \hat{j} \right)}{3} = \frac{\hat{i} - 3 \hat{j}}{3}\]

\[ \Rightarrow \left| \vec{b} \right| = \frac{1}{3}\sqrt{1 + 9} = \frac{\sqrt{10}}{3}\]

\[ \vec{a} . \vec{b} = \frac{1}{9} \left( 1 - 9 \right) = \frac{- 8}{9}\]

\[\text{ We know that }\]

\[ \vec{a} . \vec{b} = \left| \vec{a} \right| \left| \vec{b} \right| \cos \theta\]

\[ \Rightarrow \frac{- 8}{9} = \frac{\sqrt{10}}{3} \times \frac{\sqrt{10}}{3} \cos \theta\]

\[ \Rightarrow \frac{- 8}{9} = \frac{10}{9}\cos \theta\]

\[ \Rightarrow \cos \theta = \frac{- 8}{9} \times \frac{9}{10} = \frac{- 4}{5}\]

\[\]

\[\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 24: Scalar Or Dot Product - MCQ [Page 49]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 24 Scalar Or Dot Product
MCQ | Q 1 | Page 49

Video TutorialsVIEW ALL [2]

RELATED QUESTIONS

Classify the following measures as scalars and vectors:
(i) 15 kg
(ii) 20 kg weight
(iii) 45°
(iv) 10 meters south-east
(v) 50 m/sec2


Answer the following as true or false:
\[\vec{a}\] and \[\vec{a}\]  are collinear.


Answer the following as true or false:
Two collinear vectors are always equal in magnitude.


Answer the following as true or false:
Zero vector is unique.


Answer the following as true or false:
Two collinear vectors having the same magnitude are equal.


If \[\vec{a}\] and \[\vec{b}\] are two non-collinear vectors having the same initial point. What are the vectors represented by \[\vec{a}\] + \[\vec{b}\]  and \[\vec{a}\] − \[\vec{b}\].

 


Show that the points (3, 4), (−5, 16) and (5, 1) are collinear.


If the vectors \[\vec{a} = 2 \hat{i} - 3 \hat{j}\] and \[\vec{b} = - 6 \hat{i} + m \hat{j}\] are collinear, find the value of m.


Show that the points A (1, −2, −8), B (5, 0, −2) and C (11, 3, 7) are collinear, and find the ratio in which B divides AC.


Using vectors show that the points A (−2, 3, 5), B (7, 0, −1) C (−3, −2, −5) and D (3, 4, 7) are such that AB and CD intersect at the point P (1, 2, 3).


If \[\vec{a}\], \[\vec{b}\], \[\vec{c}\] are non-zero, non-coplanar vectors, prove that the following vectors are coplanar:
(1) \[5 \vec{a} + 6 \vec{b} + 7 \vec{c,} 7 \vec{a} - 8 \vec{b} + 9 \vec{c}\text{ and }3 \vec{a} + 20 \vec{b} + 5 \vec{c}\]

(2) \[\vec{a} - 2 \vec{b} + 3 \vec{c} , - 3 \vec{b} + 5 \vec{c}\text{ and }- 2 \vec{a} + 3 \vec{b} - 4 \vec{c}\]

Prove that the following vectors are coplanar:
\[2 \hat{i} - \hat{j} + \hat{k} , \hat{i} - 3 \hat{j} - 5 \hat{k} \text{ and }3 \hat{i} - 4 \hat{j} - 4 \hat{k}\]


Prove that the following vectors are coplanar:
\[\hat{i} + \hat{j} + \hat{k} , 2 \hat{i} + 3 \hat{j} - \hat{k}\text{ and }- \hat{i} - 2 \hat{j} + 2 \hat{k}\]


Prove that the following vectors are non-coplanar:

\[3 \hat{i} + \hat{j} - \hat{k} , 2 \hat{i} - \hat{j} + 7 \hat{k}\text{ and }7 \hat{i} - \hat{j} + 23 \hat{k}\]

Prove that the following vectors are non-coplanar:

\[\hat{i} + 2 \hat{j} + 3 \hat{k} , 2 \hat{i} + \hat{j} + 3 \hat{k}\text{ and }\hat{i} + \hat{j} + \hat{k}\]

If \[\vec{a}\], \[\vec{a}\], \[\vec{c}\] are non-coplanar vectors, prove that the following vectors are non-coplanar: \[2 \vec{a} - \vec{b} + 3 \vec{c} , \vec{a} + \vec{b} - 2 \vec{c}\text{ and }\vec{a} + \vec{b} - 3 \vec{c}\]


Show that the vectors \[\vec{a,} \vec{b,} \vec{c}\] given by \[\vec{a} = \hat{i} + 2 \hat{j} + 3 \hat{k} , \vec{b} = 2 \hat{i} + \hat{j} + 3 \hat{k}\text{ and }\vec{c} = \hat{i} + \hat{j} + \hat{k}\]  are non coplanar.
Express vector \[\vec{d} = 2 \hat{i}-j-  3 \hat{k} , \text{ and }\text { as  a linear combination of the vectors } \vec{a,} \vec{b}\text{ and }\vec{c} .\]


If \[\vec{a} + \vec{b} + \vec{c} = \vec{0} , \left| \vec{a} \right| = 3, \left| \vec{b} \right| = 5, \left| \vec{c} \right| = 7,\] then the angle between \[\vec{a} \text{ and } \vec{b}\] is 


Let \[\vec{a} \text{ and } \vec{b}\]  be two unit vectors and α be the angle between them. Then, \[\vec{a} + \vec{b}\] is a unit vector if 


If the position vectors of P and Q are \[\hat{i} + 3 \hat{j} - 7 \hat{k} \text{ and } 5 \text{i} - 2 \hat{j} + 4 \hat{k}\] then the cosine of the angle between \[\vec{PQ}\] and y-axis is 


If the vectors `hati - 2xhatj + 3 yhatk and hati + 2xhatj - 3yhatk` are perpendicular, then the locus of (x, y) is ______.


What is the length of the longer diagonal of the parallelogram constructed on \[5 \vec{a} + 2 \vec{b} \text{ and } \vec{a} - 3 \vec{b}\] if it is given that \[\left| \vec{a} \right| = 2\sqrt{2}, \left| \vec{b} \right| = 3\] and the angle between \[\vec{a} \text{ and } \vec{b}\] is π/4? 


The vectors \[2 \hat{i} + 3 \hat{j} - 4 \hat{k}\] and \[a \hat{i} + \hat{b} j + c \hat{k}\] are perpendicular if 


If \[\left| \vec{a} \right| = \left| \vec{b} \right|, \text{ then } \left( \vec{a} + \vec{b} \right) \cdot \left( \vec{a} - \vec{b} \right) =\]


If \[\vec{a} \text{ and } \vec{b}\] are unit vectors inclined at an angle θ, then the value of \[\left| \vec{a} - \vec{b} \right|\] 


If \[\vec{a} \text{ and } \vec{b}\] are two unit vectors inclined at an angle θ, such that \[\left| \vec{a} + \vec{b} \right| < 1,\] then 


Let \[\vec{a} , \vec{b} , \vec{c}\] be three unit vectors, such that \[\left| \vec{a} + \vec{b} + \vec{c} \right|\] =1 and \[\vec{a}\] is perpendicular to \[\vec{b}\]  If \[\vec{c}\] makes angles α and β with \[\vec{a} and \vec{b}\] respectively, then cos α + cos β =


If θ is an acute angle and the vector (sin θ) \[\text{i}\]  + (cos θ) \[\hat{j}\]  is perpendicular to the vector \[\hat{i} - \sqrt{3} \hat{j} ,\] then θ = 


If \[\vec{a} \text{ and }\vec{b}\] be two unit vectors and θ the angle between them, then \[\vec{a} + \vec{b}\] is a unit vector if θ = 


In Figure ABCD is a regular hexagon, which vectors are:
(i) Collinear
(ii) Equal
(iii) Coinitial
(iv) Collinear but not equal.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×