Advertisements
Advertisements
प्रश्न
The vectors \[\vec{a} \text{ and } \vec{b}\] satisfy the equations \[2 \vec{a} + \vec{b} = \vec{p} \text{ and } \vec{a} + 2 \vec{b} = \vec{q} , \text{ where } \vec{p} = \hat{i} + \hat{j} \text{ and } \vec{q} = \hat{i} - \hat{j} .\] the angle between \[\vec{a} \text{ and } \vec{b}\] then
पर्याय
\[\cos \theta = \frac{4}{5}\]
\[\sin \theta = \frac{1}{\sqrt{2}}\]
\[\cos \theta = - \frac{4}{5}\]
\[\cos \theta = - \frac{3}{5}\]
उत्तर
\[\cos \theta = - \frac{4}{5}\]
\[\text{ Given that }\]
\[2 \vec{a} + \vec{b} = \vec{p} . . . \left( 1 \right)\]
\[ \vec{a} + 2 \vec{b} = \vec{q} . . . \left( 2 \right)\]
\[\text{ Solving these two we get }\]
\[ \vec{a} = \frac{2 \vec{p} - \vec{q}}{3}, \vec{b} = \frac{2 \vec{q} - \vec{p}}{3}\]
\[\text{ And we have }\]
\[ \vec{p} = \hat{i} + \hat{j} \text{ and } \vec{q} = \hat{i} - \hat{j} \]
\[\text{ Substituting the values of } \vec{p} \text{ and } \vec{q,} \text{ we get }\]
\[ \vec{a} = \frac{2 \vec{p} - \vec{q}}{3} = \frac{2\left( \hat{i} + \hat{j} \right) - \left( \hat{i}- \hat{j} \right)}{3} = \frac{\hat{i} + 3 \hat{j}}{3}\]
\[ \Rightarrow \left| \vec{a} \right| = \frac{1}{3}\sqrt{1 + 9} = \frac{\sqrt{10}}{3}\]
\[ \vec{b} = \frac{2 \vec{q} - \vec{p}}{3} = \frac{2\left( \hat{i} - \hat{j} \right) - \left( \hat{i} + \hat{j} \right)}{3} = \frac{\hat{i} - 3 \hat{j}}{3}\]
\[ \Rightarrow \left| \vec{b} \right| = \frac{1}{3}\sqrt{1 + 9} = \frac{\sqrt{10}}{3}\]
\[ \vec{a} . \vec{b} = \frac{1}{9} \left( 1 - 9 \right) = \frac{- 8}{9}\]
\[\text{ We know that }\]
\[ \vec{a} . \vec{b} = \left| \vec{a} \right| \left| \vec{b} \right| \cos \theta\]
\[ \Rightarrow \frac{- 8}{9} = \frac{\sqrt{10}}{3} \times \frac{\sqrt{10}}{3} \cos \theta\]
\[ \Rightarrow \frac{- 8}{9} = \frac{10}{9}\cos \theta\]
\[ \Rightarrow \cos \theta = \frac{- 8}{9} \times \frac{9}{10} = \frac{- 4}{5}\]
\[\]
\[\]
APPEARS IN
संबंधित प्रश्न
Classify the following measures as scalars and vectors:
(i) 15 kg
(ii) 20 kg weight
(iii) 45°
(iv) 10 meters south-east
(v) 50 m/sec2
Classify the following as scalars and vector quantities:
(i) Time period
(ii) Distance
(iii) displacement
(iv) Force
(v) Work
(vi) Velocity
(vii) Acceleration
Answer the following as true or false:
\[\vec{a}\] and \[\vec{a}\] are collinear.
Answer the following as true or false:
Two collinear vectors are always equal in magnitude.
Answer the following as true or false:
Zero vector is unique.
Answer the following as true or false:
Two vectors having same magnitude are collinear.
If \[\vec{a}\] and \[\vec{b}\] are two non-collinear vectors having the same initial point. What are the vectors represented by \[\vec{a}\] + \[\vec{b}\] and \[\vec{a}\] − \[\vec{b}\].
If O is a point in space, ABC is a triangle and D, E, F are the mid-points of the sides BC, CA and AB respectively of the triangle, prove that \[\vec{OA} + \vec{OB} + \vec{OC} = \vec{OD} + \vec{OE} + \vec{OF}\]
Show that the points A (1, −2, −8), B (5, 0, −2) and C (11, 3, 7) are collinear, and find the ratio in which B divides AC.
Using vectors show that the points A (−2, 3, 5), B (7, 0, −1) C (−3, −2, −5) and D (3, 4, 7) are such that AB and CD intersect at the point P (1, 2, 3).
Prove that the following vectors are coplanar:
\[2 \hat{i} - \hat{j} + \hat{k} , \hat{i} - 3 \hat{j} - 5 \hat{k} \text{ and }3 \hat{i} - 4 \hat{j} - 4 \hat{k}\]
The vector (cos α cos β) \[\hat{i}\] + (cos α sin β) \[\hat{j}\] + (sin α) \[\hat{k}\] is a
If \[\vec{a} \text{ and } \vec{b}\] are unit vectors, then which of the following values of \[\vec{a} . \vec{b}\] is not possible?
The vector component of \[\vec{b}\] perpendicular to \[\vec{a}\] is
What is the length of the longer diagonal of the parallelogram constructed on \[5 \vec{a} + 2 \vec{b} \text{ and } \vec{a} - 3 \vec{b}\] if it is given that \[\left| \vec{a} \right| = 2\sqrt{2}, \left| \vec{b} \right| = 3\] and the angle between \[\vec{a} \text{ and } \vec{b}\] is π/4?
If θ is the angle between two vectors `veca` and `vecb` then, `veca * vecb` ≥ 0, only when
The values of x for which the angle between \[\vec{a} = 2 x^2 \hat{i} + 4x \hat{j} + \hat{k} , \vec{b} = 7 \hat{i} - 2 \hat{j} + x \hat{k}\] is obtuse and the angle between \[\vec{b}\] and the z-axis is acute and less than \[\frac{\pi}{6}\] are
If \[\vec{a} , \vec{b} , \vec{c}\] are any three mutually perpendicular vectors of equal magnitude a, then \[\left| \vec{a} + \vec{b} + \vec{c} \right|\] is equal to
If the vectors \[3 \hat{i} + \lambda \hat{j} + \hat{k} \text{ and } 2 \hat{i} - \hat{j} + 8 \hat{k}\] are perpendicular, then λ is equal to
If \[\left| \vec{a} \right| = \left| \vec{b} \right|, \text{ then } \left( \vec{a} + \vec{b} \right) \cdot \left( \vec{a} - \vec{b} \right) =\]
If \[\vec{a} \text{ and } \vec{b}\] are unit vectors inclined at an angle θ, then the value of \[\left| \vec{a} - \vec{b} \right|\]
If the angle between the vectors \[x \hat{i} + 3 \hat{j}- 7 \hat{k} \text{ and } x \hat{i} - x \hat{j} + 4 \hat{k}\] is acute, then x lies in the interval
Let \[\vec{a} , \vec{b} , \vec{c}\] be three unit vectors, such that \[\left| \vec{a} + \vec{b} + \vec{c} \right|\] =1 and \[\vec{a}\] is perpendicular to \[\vec{b}\] If \[\vec{c}\] makes angles α and β with \[\vec{a} and \vec{b}\] respectively, then cos α + cos β =
The orthogonal projection of \[\vec{a} \text{ on } \vec{b}\] is
If θ is an acute angle and the vector (sin θ) \[\text{i}\] + (cos θ) \[\hat{j}\] is perpendicular to the vector \[\hat{i} - \sqrt{3} \hat{j} ,\] then θ =
If \[\vec{a} \text{ and }\vec{b}\] be two unit vectors and θ the angle between them, then \[\vec{a} + \vec{b}\] is a unit vector if θ =
In Figure ABCD is a regular hexagon, which vectors are:
(i) Collinear
(ii) Equal
(iii) Coinitial
(iv) Collinear but not equal.