मराठी

The Vectors → a and → B Satisfy the Equations 2 → a + → B = → P and → a + 2 → B = → Q , Where → P = ^ I + ^ J and → Q = ^ I − ^ J . the Angle Between → a and → B Then - Mathematics

Advertisements
Advertisements

प्रश्न

The vectors \[\vec{a} \text{ and } \vec{b}\] satisfy the equations \[2 \vec{a} + \vec{b} = \vec{p} \text{ and } \vec{a} + 2 \vec{b} = \vec{q} , \text{ where } \vec{p} = \hat{i} + \hat{j} \text{ and } \vec{q} = \hat{i} - \hat{j} .\] the angle between \[\vec{a} \text{ and } \vec{b}\] then 

पर्याय

  •  \[\cos \theta = \frac{4}{5}\]

  •  \[\sin \theta = \frac{1}{\sqrt{2}}\]

  •  \[\cos \theta = - \frac{4}{5}\]

  •  \[\cos \theta = - \frac{3}{5}\] 

MCQ
बेरीज

उत्तर

 \[\cos \theta = - \frac{4}{5}\]  

\[\text{ Given that }\]

\[2 \vec{a} + \vec{b} = \vec{p} . . . \left( 1 \right)\]

\[ \vec{a} + 2 \vec{b} = \vec{q} . . . \left( 2 \right)\]

\[\text{ Solving these two we get }\]

\[ \vec{a} = \frac{2 \vec{p} - \vec{q}}{3}, \vec{b} = \frac{2 \vec{q} - \vec{p}}{3}\]

\[\text{ And we have }\]

\[ \vec{p} = \hat{i} + \hat{j} \text{ and } \vec{q} = \hat{i} - \hat{j} \]

\[\text{ Substituting the values of } \vec{p} \text{ and } \vec{q,} \text{ we get }\]

\[ \vec{a} = \frac{2 \vec{p} - \vec{q}}{3} = \frac{2\left( \hat{i} + \hat{j} \right) - \left( \hat{i}- \hat{j} \right)}{3} = \frac{\hat{i} + 3 \hat{j}}{3}\]

\[ \Rightarrow \left| \vec{a} \right| = \frac{1}{3}\sqrt{1 + 9} = \frac{\sqrt{10}}{3}\]

\[ \vec{b} = \frac{2 \vec{q} - \vec{p}}{3} = \frac{2\left( \hat{i} - \hat{j} \right) - \left( \hat{i} + \hat{j} \right)}{3} = \frac{\hat{i} - 3 \hat{j}}{3}\]

\[ \Rightarrow \left| \vec{b} \right| = \frac{1}{3}\sqrt{1 + 9} = \frac{\sqrt{10}}{3}\]

\[ \vec{a} . \vec{b} = \frac{1}{9} \left( 1 - 9 \right) = \frac{- 8}{9}\]

\[\text{ We know that }\]

\[ \vec{a} . \vec{b} = \left| \vec{a} \right| \left| \vec{b} \right| \cos \theta\]

\[ \Rightarrow \frac{- 8}{9} = \frac{\sqrt{10}}{3} \times \frac{\sqrt{10}}{3} \cos \theta\]

\[ \Rightarrow \frac{- 8}{9} = \frac{10}{9}\cos \theta\]

\[ \Rightarrow \cos \theta = \frac{- 8}{9} \times \frac{9}{10} = \frac{- 4}{5}\]

\[\]

\[\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 24: Scalar Or Dot Product - MCQ [पृष्ठ ४९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 24 Scalar Or Dot Product
MCQ | Q 1 | पृष्ठ ४९

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Classify the following measures as scalars and vectors:
(i) 15 kg
(ii) 20 kg weight
(iii) 45°
(iv) 10 meters south-east
(v) 50 m/sec2


Classify the following as scalars and vector quantities:
(i) Time period
(ii) Distance
(iii) displacement
(iv) Force
(v) Work
(vi) Velocity
(vii) Acceleration


Answer the following as true or false:
\[\vec{a}\] and \[\vec{a}\]  are collinear.


Answer the following as true or false:
Two collinear vectors are always equal in magnitude.


Answer the following as true or false:
Zero vector is unique.


Answer the following as true or false:
Two vectors having same magnitude are collinear.


If \[\vec{a}\] and \[\vec{b}\] are two non-collinear vectors having the same initial point. What are the vectors represented by \[\vec{a}\] + \[\vec{b}\]  and \[\vec{a}\] − \[\vec{b}\].

 


If O is a point in space, ABC is a triangle and D, E, F are the mid-points of the sides BC, CA and AB respectively of the triangle, prove that \[\vec{OA} + \vec{OB} + \vec{OC} = \vec{OD} + \vec{OE} + \vec{OF}\]


Show that the points A (1, −2, −8), B (5, 0, −2) and C (11, 3, 7) are collinear, and find the ratio in which B divides AC.


Using vectors show that the points A (−2, 3, 5), B (7, 0, −1) C (−3, −2, −5) and D (3, 4, 7) are such that AB and CD intersect at the point P (1, 2, 3).


Prove that the following vectors are coplanar:
\[2 \hat{i} - \hat{j} + \hat{k} , \hat{i} - 3 \hat{j} - 5 \hat{k} \text{ and }3 \hat{i} - 4 \hat{j} - 4 \hat{k}\]


The vector (cos α cos β) \[\hat{i}\] + (cos α sin β) \[\hat{j}\] + (sin α) \[\hat{k}\]  is a 


If \[\vec{a} \text{ and } \vec{b}\] are unit vectors, then which of the following values of \[\vec{a} . \vec{b}\] is not possible? 


The vector component of \[\vec{b}\] perpendicular to \[\vec{a}\] is 


What is the length of the longer diagonal of the parallelogram constructed on \[5 \vec{a} + 2 \vec{b} \text{ and } \vec{a} - 3 \vec{b}\] if it is given that \[\left| \vec{a} \right| = 2\sqrt{2}, \left| \vec{b} \right| = 3\] and the angle between \[\vec{a} \text{ and } \vec{b}\] is π/4? 


If θ is the angle between two vectors `veca` and `vecb` then, `veca * vecb` ≥ 0, only when


The values of x for which the angle between \[\vec{a} = 2 x^2 \hat{i} + 4x \hat{j} + \hat{k} , \vec{b} = 7 \hat{i} - 2 \hat{j} + x \hat{k}\]  is obtuse and the angle between \[\vec{b}\] and the z-axis is acute and less than \[\frac{\pi}{6}\]  are


If \[\vec{a} , \vec{b} , \vec{c}\] are any three mutually perpendicular vectors of equal magnitude a, then \[\left| \vec{a} + \vec{b} + \vec{c} \right|\] is equal to 


If the vectors \[3 \hat{i} + \lambda \hat{j} + \hat{k} \text{ and } 2 \hat{i} - \hat{j} + 8 \hat{k}\] are perpendicular, then λ is equal to 


If \[\left| \vec{a} \right| = \left| \vec{b} \right|, \text{ then } \left( \vec{a} + \vec{b} \right) \cdot \left( \vec{a} - \vec{b} \right) =\]


If \[\vec{a} \text{ and } \vec{b}\] are unit vectors inclined at an angle θ, then the value of \[\left| \vec{a} - \vec{b} \right|\] 


If the angle between the vectors \[x \hat{i} + 3 \hat{j}- 7 \hat{k} \text{ and } x \hat{i} - x \hat{j} + 4 \hat{k}\] is acute, then x lies in the interval 


Let \[\vec{a} , \vec{b} , \vec{c}\] be three unit vectors, such that \[\left| \vec{a} + \vec{b} + \vec{c} \right|\] =1 and \[\vec{a}\] is perpendicular to \[\vec{b}\]  If \[\vec{c}\] makes angles α and β with \[\vec{a} and \vec{b}\] respectively, then cos α + cos β =


The orthogonal projection of \[\vec{a} \text{ on } \vec{b}\] is 


If θ is an acute angle and the vector (sin θ) \[\text{i}\]  + (cos θ) \[\hat{j}\]  is perpendicular to the vector \[\hat{i} - \sqrt{3} \hat{j} ,\] then θ = 


If \[\vec{a} \text{ and }\vec{b}\] be two unit vectors and θ the angle between them, then \[\vec{a} + \vec{b}\] is a unit vector if θ = 


In Figure ABCD is a regular hexagon, which vectors are:
(i) Collinear
(ii) Equal
(iii) Coinitial
(iv) Collinear but not equal.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×