Advertisements
Advertisements
प्रश्न
The values of x for which the angle between \[\vec{a} = 2 x^2 \hat{i} + 4x \hat{j} + \hat{k} , \vec{b} = 7 \hat{i} - 2 \hat{j} + x \hat{k}\] is obtuse and the angle between \[\vec{b}\] and the z-axis is acute and less than \[\frac{\pi}{6}\] are
पर्याय
(a) \[x > \frac{1}{2} or x < 0\]
(b) \[0 < x < \frac{1}{2}\]
(c) \[\frac{1}{2} < x < 15\]
(d) ϕ
उत्तर
(b) \[0 < x < \frac{1}{2}\]
\[\vec{a} = 2 x^2 \hat{i} + 4x \hat{j} + \hat{k} , \vec{b} = 7 \hat{i} - 2 \hat{j} + x \hat{k}\]
Let the angle between vector a and vector b be A.
\[\therefore \cos A = \frac{\vec{a} . \vec{b}}{\left| \vec{a} \right|\left| \vec{b} \right|} = \frac{\left( 2 x^2 \hat{i} + 4x \hat{j} + \hat{k} \right) . \left( 7 \hat{i} - 2 \hat{j} + x \hat{k} \right)}{\left| 2 x^2 \hat{i} + 4x \hat{j} + \hat{k} \right| \left| 7 \hat{i} - 2 \hat{j} + x \hat{k} \right|}\]
\[ = \frac{14 x^2 - 8x + x}{\sqrt{4 x^4 + 16 x^2 + 1}\sqrt{49 + 4 + x^2}}\]
\[ = \frac{14 x^2 - 7x}{\sqrt{4 x^4 + 16 x^2 + 1}\sqrt{53 + x^2}}\]
\[Now, \ ∠ \text{ A is an obtuse angle }. \]
\[ \therefore \cos A < 0\]
\[ \Rightarrow \frac{14 x^2 - 7x}{\sqrt{4 x^4 + 16 x^2 + 1}\sqrt{53 + x^2}} < 0\]
\[ \Rightarrow 14 x^2 - 7x < 0\]
\[ \Rightarrow 2 x^2 - x < 0\]
\[ \Rightarrow x\left( 2x - 1 \right) < 0\]
\[ \Rightarrow x < 0 \text{ and }\ 2x - 1 > 0 \text{ or } x > 0\ \text{ and }\ 2x - 1 < 0\]
\[ \Rightarrow x < 0 \text{ and } x > \frac{1}{2} \text{ or } x > 0 \text{ and } x < \frac{1}{2}\]
\[ \Rightarrow x > 0 \text{ and } x < \frac{1}{2} \left( \text{ As there cannot be any number less than zero and greater than } 1/2 \right)\]
\[ \Rightarrow x \in \left( 0, \frac{1}{2} \right) . . . (i)\]
\[\text{Let the equation of the z} - \text{axis be z} \hat{k} . \]
\[\text{ And let the angle between } \vec{b} \text{ and z } - \text{ axis be B } . \]
\[ \therefore \cos B = \frac{\left( 7 \hat{i} - 2 \hat{j} + x \hat{k} \right) . \left( z \hat{k} \right)}{\left| 7 \hat{i} - 2 \hat{j} + x \hat{k} \right| \left| z \hat{k} \right|}\]
\[ = \frac{xz}{z\sqrt{49 + 4 + x^2}}\]
\[ = \frac{x}{\sqrt{53 + x^2}}\]
\[\text{ Now, angle B is acute and less than } \pi/6 . \]
\[ \therefore 0 < \frac{x}{\sqrt{53 + x^2}} < \cos\frac{\pi}{6}\]
\[ \Rightarrow 0 < x < \frac{\sqrt{3}}{2}\sqrt{53 + x^2} . . . (ii)\]
\[\text{ From } (i) \text{ and } (ii) \text{ we get }\]
\[0 < x < \frac{1}{2}\]
APPEARS IN
संबंधित प्रश्न
Answer the following as true or false:
Zero vector is unique.
Answer the following as true or false:
Two vectors having same magnitude are collinear.
Answer the following as true or false:
Two collinear vectors having the same magnitude are equal.
Five forces \[\overrightarrow{AB,} \overrightarrow { AC,} \overrightarrow{ AD,}\overrightarrow{AE}\] and \[\overrightarrow{AF}\] act at the vertex of a regular hexagon ABCDEF. Prove that the resultant is 6 \[\overrightarrow{AO,}\] where O is the centre of hexagon.
If O is a point in space, ABC is a triangle and D, E, F are the mid-points of the sides BC, CA and AB respectively of the triangle, prove that \[\vec{OA} + \vec{OB} + \vec{OC} = \vec{OD} + \vec{OE} + \vec{OF}\]
Show that the points (3, 4), (−5, 16) and (5, 1) are collinear.
Using vectors show that the points A (−2, 3, 5), B (7, 0, −1) C (−3, −2, −5) and D (3, 4, 7) are such that AB and CD intersect at the point P (1, 2, 3).
If \[\vec{a}\], \[\vec{b}\], \[\vec{c}\] are non-zero, non-coplanar vectors, prove that the following vectors are coplanar:
(1) \[5 \vec{a} + 6 \vec{b} + 7 \vec{c,} 7 \vec{a} - 8 \vec{b} + 9 \vec{c}\text{ and }3 \vec{a} + 20 \vec{b} + 5 \vec{c}\]
Prove that the following vectors are coplanar:
\[2 \hat{i} - \hat{j} + \hat{k} , \hat{i} - 3 \hat{j} - 5 \hat{k} \text{ and }3 \hat{i} - 4 \hat{j} - 4 \hat{k}\]
Prove that the following vectors are non-coplanar:
Prove that the following vectors are non-coplanar:
If \[\vec{a}\], \[\vec{a}\], \[\vec{c}\] are non-coplanar vectors, prove that the following vectors are non-coplanar: \[2 \vec{a} - \vec{b} + 3 \vec{c} , \vec{a} + \vec{b} - 2 \vec{c}\text{ and }\vec{a} + \vec{b} - 3 \vec{c}\]
The vectors \[\vec{a} \text{ and } \vec{b}\] satisfy the equations \[2 \vec{a} + \vec{b} = \vec{p} \text{ and } \vec{a} + 2 \vec{b} = \vec{q} , \text{ where } \vec{p} = \hat{i} + \hat{j} \text{ and } \vec{q} = \hat{i} - \hat{j} .\] the angle between \[\vec{a} \text{ and } \vec{b}\] then
If \[\vec{a} \cdot \text{i} = \vec{a} \cdot \left( \hat{i} + \hat{j} \right) = \vec{a} \cdot \left( \hat{i} + \hat{j} + \hat{k} \right) = 1,\] then \[\vec{a} =\]
If \[\vec{a} + \vec{b} + \vec{c} = \vec{0} , \left| \vec{a} \right| = 3, \left| \vec{b} \right| = 5, \left| \vec{c} \right| = 7,\] then the angle between \[\vec{a} \text{ and } \vec{b}\] is
If \[\vec{a} + \vec{b} + \vec{c} = \vec{0} , \left| \vec{a} \right| = 3, \left| \vec{b} \right| = 5, \left| \vec{c} \right| = 7,\] then the angle between \[\vec{a} \text{ and } \vec{b}\] is
If the position vectors of P and Q are \[\hat{i} + 3 \hat{j} - 7 \hat{k} \text{ and } 5 \text{i} - 2 \hat{j} + 4 \hat{k}\] then the cosine of the angle between \[\vec{PQ}\] and y-axis is
If the vectors `hati - 2xhatj + 3 yhatk and hati + 2xhatj - 3yhatk` are perpendicular, then the locus of (x, y) is ______.
What is the length of the longer diagonal of the parallelogram constructed on \[5 \vec{a} + 2 \vec{b} \text{ and } \vec{a} - 3 \vec{b}\] if it is given that \[\left| \vec{a} \right| = 2\sqrt{2}, \left| \vec{b} \right| = 3\] and the angle between \[\vec{a} \text{ and } \vec{b}\] is π/4?
If \[\vec{a} , \vec{b} , \vec{c}\] are any three mutually perpendicular vectors of equal magnitude a, then \[\left| \vec{a} + \vec{b} + \vec{c} \right|\] is equal to
The projection of the vector \[\hat{i} + \hat{j} + \hat{k}\] along the vector of \[\hat{j}\] is
The vectors \[2 \hat{i} + 3 \hat{j} - 4 \hat{k}\] and \[a \hat{i} + \hat{b} j + c \hat{k}\] are perpendicular if
If \[\left| \vec{a} \right| = \left| \vec{b} \right|, \text{ then } \left( \vec{a} + \vec{b} \right) \cdot \left( \vec{a} - \vec{b} \right) =\]
If \[\vec{a} \text{ and } \vec{b}\] are unit vectors inclined at an angle θ, then the value of \[\left| \vec{a} - \vec{b} \right|\]
If \[\vec{a} \text{ and } \vec{b}\] are unit vectors, then the greatest value of \[\sqrt{3}\left| \vec{a} + \vec{b} \right| + \left| \vec{a} - \vec{b} \right|\]
If \[\vec{a} \text{ and } \vec{b}\] are two unit vectors inclined at an angle θ, such that \[\left| \vec{a} + \vec{b} \right| < 1,\] then
The orthogonal projection of \[\vec{a} \text{ on } \vec{b}\] is
In Figure ABCD is a regular hexagon, which vectors are:
(i) Collinear
(ii) Equal
(iii) Coinitial
(iv) Collinear but not equal.