हिंदी

The Values of X for Which the Angle Between → a = 2 X 2 ^ I + 4 X ^ J + ^ K , → B = 7 ^ I − 2 ^ J + X ^ K is Obtuse and the Angle Between → B and the Z-axis is Acute and Less than π 6 - Mathematics

Advertisements
Advertisements

प्रश्न

The values of x for which the angle between \[\vec{a} = 2 x^2 \hat{i} + 4x \hat{j} + \hat{k} , \vec{b} = 7 \hat{i} - 2 \hat{j} + x \hat{k}\]  is obtuse and the angle between \[\vec{b}\] and the z-axis is acute and less than \[\frac{\pi}{6}\]  are

विकल्प

  • (a) \[x > \frac{1}{2} or x < 0\]

  • (b) \[0 < x < \frac{1}{2}\] 

  • (c) \[\frac{1}{2} < x < 15\] 

  • (d) ϕ 

MCQ

उत्तर

(b) \[0 < x < \frac{1}{2}\] 

\[\vec{a} = 2 x^2 \hat{i} + 4x \hat{j} + \hat{k} , \vec{b} = 7 \hat{i} - 2 \hat{j} + x \hat{k}\] 

Let the angle between vector a and vector b be A

\[\therefore \cos A = \frac{\vec{a} . \vec{b}}{\left| \vec{a} \right|\left| \vec{b} \right|} = \frac{\left( 2 x^2 \hat{i} + 4x \hat{j} + \hat{k} \right) . \left( 7 \hat{i} - 2 \hat{j} + x \hat{k} \right)}{\left| 2 x^2 \hat{i} + 4x \hat{j} + \hat{k} \right| \left| 7 \hat{i} - 2 \hat{j} + x \hat{k} \right|}\]

\[ = \frac{14 x^2 - 8x + x}{\sqrt{4 x^4 + 16 x^2 + 1}\sqrt{49 + 4 + x^2}}\]

\[ = \frac{14 x^2 - 7x}{\sqrt{4 x^4 + 16 x^2 + 1}\sqrt{53 + x^2}}\]

\[Now, \ ∠  \text{ A is an obtuse angle }. \]

\[ \therefore \cos A < 0\]

\[ \Rightarrow \frac{14 x^2 - 7x}{\sqrt{4 x^4 + 16 x^2 + 1}\sqrt{53 + x^2}} < 0\]

\[ \Rightarrow 14 x^2 - 7x < 0\]

\[ \Rightarrow 2 x^2 - x < 0\]

\[ \Rightarrow x\left( 2x - 1 \right) < 0\]

\[ \Rightarrow x < 0 \text{ and }\  2x - 1 > 0 \text{ or } x > 0\ \text{ and }\ 2x - 1 < 0\]

\[ \Rightarrow x < 0 \text{ and } x > \frac{1}{2} \text{ or } x > 0 \text{ and } x < \frac{1}{2}\]

\[ \Rightarrow x > 0 \text{ and } x < \frac{1}{2} \left( \text{ As there cannot be any number less than zero and greater than } 1/2 \right)\]

\[ \Rightarrow x \in \left( 0, \frac{1}{2} \right) . . . (i)\] 

\[\text{Let the equation of the z} - \text{axis be z} \hat{k} . \]

\[\text{ And let the angle between } \vec{b} \text{ and z } - \text{ axis be B } . \]

\[ \therefore \cos B = \frac{\left( 7 \hat{i} - 2 \hat{j} + x \hat{k} \right) . \left( z \hat{k} \right)}{\left| 7 \hat{i} - 2 \hat{j} + x \hat{k} \right| \left| z \hat{k} \right|}\]

\[ = \frac{xz}{z\sqrt{49 + 4 + x^2}}\]

\[ = \frac{x}{\sqrt{53 + x^2}}\]

\[\text{ Now, angle B is acute and less than } \pi/6 . \]

\[ \therefore 0 < \frac{x}{\sqrt{53 + x^2}} < \cos\frac{\pi}{6}\]

\[ \Rightarrow 0 < x < \frac{\sqrt{3}}{2}\sqrt{53 + x^2} . . . (ii)\]

\[\text{ From } (i) \text{ and } (ii) \text{ we get }\]

\[0 < x < \frac{1}{2}\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 24: Scalar Or Dot Product - MCQ [पृष्ठ ५०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 24 Scalar Or Dot Product
MCQ | Q 13 | पृष्ठ ५०

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Classify the following as scalars and vector quantities:
(i) Time period
(ii) Distance
(iii) displacement
(iv) Force
(v) Work
(vi) Velocity
(vii) Acceleration


Answer the following as true or false:
\[\vec{a}\] and \[\vec{a}\]  are collinear.


Answer the following as true or false:
Two vectors having same magnitude are collinear.


Answer the following as true or false:
Two collinear vectors having the same magnitude are equal.


If \[\vec{a}\] and \[\vec{b}\] are two non-collinear vectors having the same initial point. What are the vectors represented by \[\vec{a}\] + \[\vec{b}\]  and \[\vec{a}\] − \[\vec{b}\].

 


Show that the points (3, 4), (−5, 16) and (5, 1) are collinear.


Using vectors show that the points A (−2, 3, 5), B (7, 0, −1) C (−3, −2, −5) and D (3, 4, 7) are such that AB and CD intersect at the point P (1, 2, 3).


If \[\vec{a}\], \[\vec{b}\], \[\vec{c}\] are non-zero, non-coplanar vectors, prove that the following vectors are coplanar:
(1) \[5 \vec{a} + 6 \vec{b} + 7 \vec{c,} 7 \vec{a} - 8 \vec{b} + 9 \vec{c}\text{ and }3 \vec{a} + 20 \vec{b} + 5 \vec{c}\]

(2) \[\vec{a} - 2 \vec{b} + 3 \vec{c} , - 3 \vec{b} + 5 \vec{c}\text{ and }- 2 \vec{a} + 3 \vec{b} - 4 \vec{c}\]

Prove that the following vectors are coplanar:
\[2 \hat{i} - \hat{j} + \hat{k} , \hat{i} - 3 \hat{j} - 5 \hat{k} \text{ and }3 \hat{i} - 4 \hat{j} - 4 \hat{k}\]


Prove that the following vectors are non-coplanar:

\[3 \hat{i} + \hat{j} - \hat{k} , 2 \hat{i} - \hat{j} + 7 \hat{k}\text{ and }7 \hat{i} - \hat{j} + 23 \hat{k}\]

Prove that the following vectors are non-coplanar:

\[\hat{i} + 2 \hat{j} + 3 \hat{k} , 2 \hat{i} + \hat{j} + 3 \hat{k}\text{ and }\hat{i} + \hat{j} + \hat{k}\]

If \[\vec{a}\], \[\vec{a}\], \[\vec{c}\] are non-coplanar vectors, prove that the following vectors are non-coplanar: \[2 \vec{a} - \vec{b} + 3 \vec{c} , \vec{a} + \vec{b} - 2 \vec{c}\text{ and }\vec{a} + \vec{b} - 3 \vec{c}\]


If \[\vec{a}\], \[\vec{a}\], \[\vec{c}\] are non-coplanar vectors, prove that the following vectors are non-coplanar: \[\vec{a} + 2 \vec{b} + 3 \vec{c} , 2 \vec{a} + \vec{b} + 3 \vec{c}\text{ and }\vec{a} + \vec{b} + \vec{c}\]


The vectors \[\vec{a} \text{ and } \vec{b}\] satisfy the equations \[2 \vec{a} + \vec{b} = \vec{p} \text{ and } \vec{a} + 2 \vec{b} = \vec{q} , \text{ where } \vec{p} = \hat{i} + \hat{j} \text{ and } \vec{q} = \hat{i} - \hat{j} .\] the angle between \[\vec{a} \text{ and } \vec{b}\] then 


If \[\vec{a} + \vec{b} + \vec{c} = \vec{0} , \left| \vec{a} \right| = 3, \left| \vec{b} \right| = 5, \left| \vec{c} \right| = 7,\] then the angle between \[\vec{a} \text{ and } \vec{b}\] is 


Let \[\vec{a} \text{ and } \vec{b}\]  be two unit vectors and α be the angle between them. Then, \[\vec{a} + \vec{b}\] is a unit vector if 


If the position vectors of P and Q are \[\hat{i} + 3 \hat{j} - 7 \hat{k} \text{ and } 5 \text{i} - 2 \hat{j} + 4 \hat{k}\] then the cosine of the angle between \[\vec{PQ}\] and y-axis is 


If \[\vec{a} \text{ and } \vec{b}\] are unit vectors, then which of the following values of \[\vec{a} . \vec{b}\] is not possible? 


If the vectors `hati - 2xhatj + 3 yhatk and hati + 2xhatj - 3yhatk` are perpendicular, then the locus of (x, y) is ______.


The vector component of \[\vec{b}\] perpendicular to \[\vec{a}\] is 


What is the length of the longer diagonal of the parallelogram constructed on \[5 \vec{a} + 2 \vec{b} \text{ and } \vec{a} - 3 \vec{b}\] if it is given that \[\left| \vec{a} \right| = 2\sqrt{2}, \left| \vec{b} \right| = 3\] and the angle between \[\vec{a} \text{ and } \vec{b}\] is π/4? 


If \[\vec{a} , \vec{b} , \vec{c}\] are any three mutually perpendicular vectors of equal magnitude a, then \[\left| \vec{a} + \vec{b} + \vec{c} \right|\] is equal to 


If the vectors \[3 \hat{i} + \lambda \hat{j} + \hat{k} \text{ and } 2 \hat{i} - \hat{j} + 8 \hat{k}\] are perpendicular, then λ is equal to 


The vectors \[2 \hat{i} + 3 \hat{j} - 4 \hat{k}\] and \[a \hat{i} + \hat{b} j + c \hat{k}\] are perpendicular if 


If \[\vec{a} \text{ and } \vec{b}\] are unit vectors inclined at an angle θ, then the value of \[\left| \vec{a} - \vec{b} \right|\] 


If \[\vec{a} \text{ and } \vec{b}\] are unit vectors, then the greatest value of \[\sqrt{3}\left| \vec{a} + \vec{b} \right| + \left| \vec{a} - \vec{b} \right|\] 


If the angle between the vectors \[x \hat{i} + 3 \hat{j}- 7 \hat{k} \text{ and } x \hat{i} - x \hat{j} + 4 \hat{k}\] is acute, then x lies in the interval 


If \[\vec{a} \text{ and } \vec{b}\] are two unit vectors inclined at an angle θ, such that \[\left| \vec{a} + \vec{b} \right| < 1,\] then 


If θ is an acute angle and the vector (sin θ) \[\text{i}\]  + (cos θ) \[\hat{j}\]  is perpendicular to the vector \[\hat{i} - \sqrt{3} \hat{j} ,\] then θ = 


If \[\vec{a} \text{ and }\vec{b}\] be two unit vectors and θ the angle between them, then \[\vec{a} + \vec{b}\] is a unit vector if θ = 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×