हिंदी

What is the Length of the Longer Diagonal of the Parallelogram Constructed on 5 → a + 2 → B and → a − 3 → B If It is Given that | → a | = 2 √ 2 , ∣ ∣ → B ∣ ∣ = 3 and the Angle Between - Mathematics

Advertisements
Advertisements

प्रश्न

What is the length of the longer diagonal of the parallelogram constructed on \[5 \vec{a} + 2 \vec{b} \text{ and } \vec{a} - 3 \vec{b}\] if it is given that \[\left| \vec{a} \right| = 2\sqrt{2}, \left| \vec{b} \right| = 3\] and the angle between \[\vec{a} \text{ and } \vec{b}\] is π/4? 

विकल्प

  • 15 

  •  \[\sqrt{113}\] 

  •  \[\sqrt{593}\] 

  •  \[\sqrt{369}\] 

MCQ

उत्तर

 \[\sqrt{593}\] 

\[\text{ Let } \text{ ABCD }\text{ be a parallelogram in which } \]
\[\text{ side } \vec{AB} = \vec{DC} = 5 \vec{a} + 2 \vec{b} \]
\[\text{ and } \vec{AD} = \vec{BC} = \vec{a} - 3 \vec{b} \]
\[\text{ and diagonals are AC and BD } . \]
\[\text{ Now }, \vec{AC} = \vec{AB} + \vec{BC} \]
\[ = \left( 5 \vec{a} + 2 \vec{b} \right) + \left( \vec{a} - 3 \vec{b} \right)\]
\[ = 6 \vec{a} - \vec{b} \]
\[ \therefore \left| \vec{AC} \right| = \left| 6 \vec{a} - \vec{b} \right|\]
\[ = \sqrt{\left| 6 \vec{a} \right|^2 + \left| \vec{b} \right|^2 - 2 \times \left| 6 \vec{a} \right| \times \left| \vec{b} \right|\cos\theta}\]
\[ = \sqrt{36 \left| \vec{a} \right|^2 + \left| \vec{b} \right|^2 - 12 \times \left| \vec{a} \right| \times \left| \vec{b} \right|\cos\frac{\pi}{4}}\]
\[ = \sqrt{36 \left| 2\sqrt{2} \right|^2 + \left| 3 \right|^2 - 12 \times \left| 2\sqrt{2} \right| \times \left| 3 \right| \times \frac{1}{\sqrt{2}}}\]
\[ = \sqrt{288 + 9 - 72}\]
\[ = \sqrt{225} = 15 \text{ units }\]
\[ \vec{BD} = \vec{BA} + \vec{BD} \]
\[ = - \vec{AB} + \vec{BD} \]
\[ = - \left( 5 \vec{a} + 2 \vec{b} \right) + \left( \vec{a} - 3 \vec{b} \right)\]
\[ = - 4 \vec{a} - 5 \vec{b} \]
\[ \therefore \left| \vec{BD} \right| = \left| - 4 \vec{a} - 5 \vec{b} \right|\]
\[ = \left| 4 \vec{a} + 5 \vec{b} \right|\]
\[ = \sqrt{\left| 4 \vec{a} \right|^2 + \left| 5 \vec{b} \right|^2 + 2 \times \left| 4 \vec{a} \right| \times \left| 5 \vec{b} \right|\cos\theta}\]
\[ = \sqrt{16 \left| \vec{a} \right|^2 + 25 \left| \vec{b} \right|^2 + 40 \times \left| \vec{a} \right| \times \left| \vec{b} \right|\cos\frac{\pi}{4}}\]
\[ = \sqrt{16 \left| 2\sqrt{2} \right|^2 + 25 \left| 3 \right|^2 + 40 \times \left| 2\sqrt{2} \right| \times \left| 3 \right| \times \frac{1}{\sqrt{2}}}\]
\[ = \sqrt{128 + 225 + 240}\]
\[ = \sqrt{593} \text{ units }\]
\[ \text{ Therefore, the larger diagonal } = \sqrt{593}\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 24: Scalar Or Dot Product - MCQ [पृष्ठ ४९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 24 Scalar Or Dot Product
MCQ | Q 10 | पृष्ठ ४९

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Classify the following as scalars and vector quantities:
(i) Time period
(ii) Distance
(iii) displacement
(iv) Force
(v) Work
(vi) Velocity
(vii) Acceleration


Answer the following as true or false:
\[\vec{a}\] and \[\vec{a}\]  are collinear.


Answer the following as true or false:
Two collinear vectors are always equal in magnitude.


Answer the following as true or false:
Two vectors having same magnitude are collinear.


If O is a point in space, ABC is a triangle and D, E, F are the mid-points of the sides BC, CA and AB respectively of the triangle, prove that \[\vec{OA} + \vec{OB} + \vec{OC} = \vec{OD} + \vec{OE} + \vec{OF}\]


Show that the points (3, 4), (−5, 16) and (5, 1) are collinear.


If the vectors \[\vec{a} = 2 \hat{i} - 3 \hat{j}\] and \[\vec{b} = - 6 \hat{i} + m \hat{j}\] are collinear, find the value of m.


Show that the points A (1, −2, −8), B (5, 0, −2) and C (11, 3, 7) are collinear, and find the ratio in which B divides AC.


Using vectors show that the points A (−2, 3, 5), B (7, 0, −1) C (−3, −2, −5) and D (3, 4, 7) are such that AB and CD intersect at the point P (1, 2, 3).


Prove that the following vectors are coplanar:
\[2 \hat{i} - \hat{j} + \hat{k} , \hat{i} - 3 \hat{j} - 5 \hat{k} \text{ and }3 \hat{i} - 4 \hat{j} - 4 \hat{k}\]


Prove that the following vectors are non-coplanar:

\[3 \hat{i} + \hat{j} - \hat{k} , 2 \hat{i} - \hat{j} + 7 \hat{k}\text{ and }7 \hat{i} - \hat{j} + 23 \hat{k}\]

Prove that the following vectors are non-coplanar:

\[\hat{i} + 2 \hat{j} + 3 \hat{k} , 2 \hat{i} + \hat{j} + 3 \hat{k}\text{ and }\hat{i} + \hat{j} + \hat{k}\]

If \[\vec{a}\], \[\vec{a}\], \[\vec{c}\] are non-coplanar vectors, prove that the following vectors are non-coplanar: \[\vec{a} + 2 \vec{b} + 3 \vec{c} , 2 \vec{a} + \vec{b} + 3 \vec{c}\text{ and }\vec{a} + \vec{b} + \vec{c}\]


Show that the vectors \[\vec{a,} \vec{b,} \vec{c}\] given by \[\vec{a} = \hat{i} + 2 \hat{j} + 3 \hat{k} , \vec{b} = 2 \hat{i} + \hat{j} + 3 \hat{k}\text{ and }\vec{c} = \hat{i} + \hat{j} + \hat{k}\]  are non coplanar.
Express vector \[\vec{d} = 2 \hat{i}-j-  3 \hat{k} , \text{ and }\text { as  a linear combination of the vectors } \vec{a,} \vec{b}\text{ and }\vec{c} .\]


If \[\vec{a} \cdot \text{i} = \vec{a} \cdot \left( \hat{i} + \hat{j} \right) = \vec{a} \cdot \left( \hat{i} + \hat{j} + \hat{k} \right) = 1,\]  then \[\vec{a} =\] 


If \[\vec{a} + \vec{b} + \vec{c} = \vec{0} , \left| \vec{a} \right| = 3, \left| \vec{b} \right| = 5, \left| \vec{c} \right| = 7,\] then the angle between \[\vec{a} \text{ and } \vec{b}\] is 


If \[\vec{a} + \vec{b} + \vec{c} = \vec{0} , \left| \vec{a} \right| = 3, \left| \vec{b} \right| = 5, \left| \vec{c} \right| = 7,\] then the angle between \[\vec{a} \text{ and } \vec{b}\] is 


The vector (cos α cos β) \[\hat{i}\] + (cos α sin β) \[\hat{j}\] + (sin α) \[\hat{k}\]  is a 


If the position vectors of P and Q are \[\hat{i} + 3 \hat{j} - 7 \hat{k} \text{ and } 5 \text{i} - 2 \hat{j} + 4 \hat{k}\] then the cosine of the angle between \[\vec{PQ}\] and y-axis is 


If \[\vec{a} \text{ and } \vec{b}\] are unit vectors, then which of the following values of \[\vec{a} . \vec{b}\] is not possible? 


If the vectors `hati - 2xhatj + 3 yhatk and hati + 2xhatj - 3yhatk` are perpendicular, then the locus of (x, y) is ______.


The vector component of \[\vec{b}\] perpendicular to \[\vec{a}\] is 


If θ is the angle between two vectors `veca` and `vecb` then, `veca * vecb` ≥ 0, only when


If \[\vec{a} , \vec{b} , \vec{c}\] are any three mutually perpendicular vectors of equal magnitude a, then \[\left| \vec{a} + \vec{b} + \vec{c} \right|\] is equal to 


If the vectors \[3 \hat{i} + \lambda \hat{j} + \hat{k} \text{ and } 2 \hat{i} - \hat{j} + 8 \hat{k}\] are perpendicular, then λ is equal to 


The projection of the vector \[\hat{i} + \hat{j} + \hat{k}\] along the vector of \[\hat{j}\] is


The vectors \[2 \hat{i} + 3 \hat{j} - 4 \hat{k}\] and \[a \hat{i} + \hat{b} j + c \hat{k}\] are perpendicular if 


If \[\left| \vec{a} \right| = \left| \vec{b} \right|, \text{ then } \left( \vec{a} + \vec{b} \right) \cdot \left( \vec{a} - \vec{b} \right) =\]


If \[\vec{a} \text{ and } \vec{b}\] are unit vectors inclined at an angle θ, then the value of \[\left| \vec{a} - \vec{b} \right|\] 


Let \[\vec{a} , \vec{b} , \vec{c}\] be three unit vectors, such that \[\left| \vec{a} + \vec{b} + \vec{c} \right|\] =1 and \[\vec{a}\] is perpendicular to \[\vec{b}\]  If \[\vec{c}\] makes angles α and β with \[\vec{a} and \vec{b}\] respectively, then cos α + cos β =


In Figure ABCD is a regular hexagon, which vectors are:
(i) Collinear
(ii) Equal
(iii) Coinitial
(iv) Collinear but not equal.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×