Advertisements
Advertisements
प्रश्न
What is the length of the longer diagonal of the parallelogram constructed on \[5 \vec{a} + 2 \vec{b} \text{ and } \vec{a} - 3 \vec{b}\] if it is given that \[\left| \vec{a} \right| = 2\sqrt{2}, \left| \vec{b} \right| = 3\] and the angle between \[\vec{a} \text{ and } \vec{b}\] is π/4?
पर्याय
15
\[\sqrt{113}\]
\[\sqrt{593}\]
\[\sqrt{369}\]
उत्तर
\[\sqrt{593}\]
\[\text{ Let } \text{ ABCD }\text{ be a parallelogram in which } \]
\[\text{ side } \vec{AB} = \vec{DC} = 5 \vec{a} + 2 \vec{b} \]
\[\text{ and } \vec{AD} = \vec{BC} = \vec{a} - 3 \vec{b} \]
\[\text{ and diagonals are AC and BD } . \]
\[\text{ Now }, \vec{AC} = \vec{AB} + \vec{BC} \]
\[ = \left( 5 \vec{a} + 2 \vec{b} \right) + \left( \vec{a} - 3 \vec{b} \right)\]
\[ = 6 \vec{a} - \vec{b} \]
\[ \therefore \left| \vec{AC} \right| = \left| 6 \vec{a} - \vec{b} \right|\]
\[ = \sqrt{\left| 6 \vec{a} \right|^2 + \left| \vec{b} \right|^2 - 2 \times \left| 6 \vec{a} \right| \times \left| \vec{b} \right|\cos\theta}\]
\[ = \sqrt{36 \left| \vec{a} \right|^2 + \left| \vec{b} \right|^2 - 12 \times \left| \vec{a} \right| \times \left| \vec{b} \right|\cos\frac{\pi}{4}}\]
\[ = \sqrt{36 \left| 2\sqrt{2} \right|^2 + \left| 3 \right|^2 - 12 \times \left| 2\sqrt{2} \right| \times \left| 3 \right| \times \frac{1}{\sqrt{2}}}\]
\[ = \sqrt{288 + 9 - 72}\]
\[ = \sqrt{225} = 15 \text{ units }\]
\[ \vec{BD} = \vec{BA} + \vec{BD} \]
\[ = - \vec{AB} + \vec{BD} \]
\[ = - \left( 5 \vec{a} + 2 \vec{b} \right) + \left( \vec{a} - 3 \vec{b} \right)\]
\[ = - 4 \vec{a} - 5 \vec{b} \]
\[ \therefore \left| \vec{BD} \right| = \left| - 4 \vec{a} - 5 \vec{b} \right|\]
\[ = \left| 4 \vec{a} + 5 \vec{b} \right|\]
\[ = \sqrt{\left| 4 \vec{a} \right|^2 + \left| 5 \vec{b} \right|^2 + 2 \times \left| 4 \vec{a} \right| \times \left| 5 \vec{b} \right|\cos\theta}\]
\[ = \sqrt{16 \left| \vec{a} \right|^2 + 25 \left| \vec{b} \right|^2 + 40 \times \left| \vec{a} \right| \times \left| \vec{b} \right|\cos\frac{\pi}{4}}\]
\[ = \sqrt{16 \left| 2\sqrt{2} \right|^2 + 25 \left| 3 \right|^2 + 40 \times \left| 2\sqrt{2} \right| \times \left| 3 \right| \times \frac{1}{\sqrt{2}}}\]
\[ = \sqrt{128 + 225 + 240}\]
\[ = \sqrt{593} \text{ units }\]
\[ \text{ Therefore, the larger diagonal } = \sqrt{593}\]
APPEARS IN
संबंधित प्रश्न
Answer the following as true or false:
Zero vector is unique.
Answer the following as true or false:
Two vectors having same magnitude are collinear.
If \[\vec{a}\] is a vector and m is a scalar such that m \[\vec{a}\] = \[\vec{0}\], then what are the alternatives for m and \[\vec{a}\] ?
Five forces \[\overrightarrow{AB,} \overrightarrow { AC,} \overrightarrow{ AD,}\overrightarrow{AE}\] and \[\overrightarrow{AF}\] act at the vertex of a regular hexagon ABCDEF. Prove that the resultant is 6 \[\overrightarrow{AO,}\] where O is the centre of hexagon.
If the vectors \[\vec{a} = 2 \hat{i} - 3 \hat{j}\] and \[\vec{b} = - 6 \hat{i} + m \hat{j}\] are collinear, find the value of m.
If \[\vec{a}\], \[\vec{b}\], \[\vec{c}\] are non-zero, non-coplanar vectors, prove that the following vectors are coplanar:
(1) \[5 \vec{a} + 6 \vec{b} + 7 \vec{c,} 7 \vec{a} - 8 \vec{b} + 9 \vec{c}\text{ and }3 \vec{a} + 20 \vec{b} + 5 \vec{c}\]
Prove that the following vectors are coplanar:
\[\hat{i} + \hat{j} + \hat{k} , 2 \hat{i} + 3 \hat{j} - \hat{k}\text{ and }- \hat{i} - 2 \hat{j} + 2 \hat{k}\]
Prove that the following vectors are non-coplanar:
Prove that the following vectors are non-coplanar:
If \[\vec{a}\], \[\vec{a}\], \[\vec{c}\] are non-coplanar vectors, prove that the following vectors are non-coplanar: \[2 \vec{a} - \vec{b} + 3 \vec{c} , \vec{a} + \vec{b} - 2 \vec{c}\text{ and }\vec{a} + \vec{b} - 3 \vec{c}\]
If \[\vec{a}\], \[\vec{a}\], \[\vec{c}\] are non-coplanar vectors, prove that the following vectors are non-coplanar: \[\vec{a} + 2 \vec{b} + 3 \vec{c} , 2 \vec{a} + \vec{b} + 3 \vec{c}\text{ and }\vec{a} + \vec{b} + \vec{c}\]
The vectors \[\vec{a} \text{ and } \vec{b}\] satisfy the equations \[2 \vec{a} + \vec{b} = \vec{p} \text{ and } \vec{a} + 2 \vec{b} = \vec{q} , \text{ where } \vec{p} = \hat{i} + \hat{j} \text{ and } \vec{q} = \hat{i} - \hat{j} .\] the angle between \[\vec{a} \text{ and } \vec{b}\] then
If \[\vec{a} + \vec{b} + \vec{c} = \vec{0} , \left| \vec{a} \right| = 3, \left| \vec{b} \right| = 5, \left| \vec{c} \right| = 7,\] then the angle between \[\vec{a} \text{ and } \vec{b}\] is
The vector (cos α cos β) \[\hat{i}\] + (cos α sin β) \[\hat{j}\] + (sin α) \[\hat{k}\] is a
If the position vectors of P and Q are \[\hat{i} + 3 \hat{j} - 7 \hat{k} \text{ and } 5 \text{i} - 2 \hat{j} + 4 \hat{k}\] then the cosine of the angle between \[\vec{PQ}\] and y-axis is
If the vectors `hati - 2xhatj + 3 yhatk and hati + 2xhatj - 3yhatk` are perpendicular, then the locus of (x, y) is ______.
The vector component of \[\vec{b}\] perpendicular to \[\vec{a}\] is
If \[\vec{a}\] is a non-zero vector of magnitude 'a' and λ is a non-zero scalar, then λ \[\vec{a}\] is a unit vector if
If θ is the angle between two vectors `veca` and `vecb` then, `veca * vecb` ≥ 0, only when
The values of x for which the angle between \[\vec{a} = 2 x^2 \hat{i} + 4x \hat{j} + \hat{k} , \vec{b} = 7 \hat{i} - 2 \hat{j} + x \hat{k}\] is obtuse and the angle between \[\vec{b}\] and the z-axis is acute and less than \[\frac{\pi}{6}\] are
If \[\vec{a} , \vec{b} , \vec{c}\] are any three mutually perpendicular vectors of equal magnitude a, then \[\left| \vec{a} + \vec{b} + \vec{c} \right|\] is equal to
If the vectors \[3 \hat{i} + \lambda \hat{j} + \hat{k} \text{ and } 2 \hat{i} - \hat{j} + 8 \hat{k}\] are perpendicular, then λ is equal to
The vectors \[2 \hat{i} + 3 \hat{j} - 4 \hat{k}\] and \[a \hat{i} + \hat{b} j + c \hat{k}\] are perpendicular if
If \[\vec{a} \text{ and } \vec{b}\] are unit vectors, then the greatest value of \[\sqrt{3}\left| \vec{a} + \vec{b} \right| + \left| \vec{a} - \vec{b} \right|\]
If the angle between the vectors \[x \hat{i} + 3 \hat{j}- 7 \hat{k} \text{ and } x \hat{i} - x \hat{j} + 4 \hat{k}\] is acute, then x lies in the interval
Let \[\vec{a} , \vec{b} , \vec{c}\] be three unit vectors, such that \[\left| \vec{a} + \vec{b} + \vec{c} \right|\] =1 and \[\vec{a}\] is perpendicular to \[\vec{b}\] If \[\vec{c}\] makes angles α and β with \[\vec{a} and \vec{b}\] respectively, then cos α + cos β =
The orthogonal projection of \[\vec{a} \text{ on } \vec{b}\] is
If θ is an acute angle and the vector (sin θ) \[\text{i}\] + (cos θ) \[\hat{j}\] is perpendicular to the vector \[\hat{i} - \sqrt{3} \hat{j} ,\] then θ =
If \[\vec{a} \text{ and }\vec{b}\] be two unit vectors and θ the angle between them, then \[\vec{a} + \vec{b}\] is a unit vector if θ =