Advertisements
Advertisements
प्रश्न
If \[\vec{a} + \vec{b} + \vec{c} = \vec{0} , \left| \vec{a} \right| = 3, \left| \vec{b} \right| = 5, \left| \vec{c} \right| = 7,\] then the angle between \[\vec{a} \text{ and } \vec{b}\] is
पर्याय
\[\frac{\pi}{6}\]
\[\frac{2\pi}{3}\]
\[\frac{5\pi}{3}\]
\[\frac{\pi}{3}\]
उत्तर
\[\frac{\pi}{3}\]
\[\text{ Given }, \left| \vec{a} \right| = 3, \left| \vec{b} \right| = 5 \text{ and } \left| \vec{c} \right| = 7 . . . \left( i \right)\]
\[\text{ Let } \theta \text{ be the angle between } \vec{a} \text{ and } \vec{b} .\]
\[\text{ Given that }\]
\[ \vec{a} + \vec{b} + \vec{c} = 0\]
\[ \Rightarrow \vec{a} + \vec{b} = - \vec{c} \]
\[ \Rightarrow \left| \vec{a} + \vec{b} \right| = \left| - \vec{c} \right|^2 \]
\[ \Rightarrow \left| \vec{a} \right|^2 + \left| \vec{b} \right|^2 + 2 \vec{a} . \vec{b} = \left| \vec{c} \right|^2 \]
\[ \Rightarrow 2 \vec{a} . \vec{b} = \left| \vec{c} \right|^2 - \left| \vec{a} \right|^2 - \left| \vec{b} \right|^2 \]
\[ \Rightarrow 2 \vec{a} . \vec{b} = 7^2 - 3^2 - 5^2...................... \left[ \text{ Using } \left( i \right) \right]\]
\[ \Rightarrow 2 \vec{a} . \vec{b} = 15\]
\[ \Rightarrow 2 \left| \vec{a} \right| \left| \vec{b} \right| \cos \theta = 15\]
\[ \Rightarrow 2 \left( 3 \right) \left( 5 \right) \cos \theta = 15 ...................\left[ \text{ Using } \left( i \right) \right]\]
\[ \Rightarrow \cos \theta = \frac{1}{2}\]
\[ \therefore \theta = \frac{\pi}{3}\]
APPEARS IN
संबंधित प्रश्न
Classify the following measures as scalars and vectors:
(i) 15 kg
(ii) 20 kg weight
(iii) 45°
(iv) 10 meters south-east
(v) 50 m/sec2
Answer the following as true or false:
Zero vector is unique.
Show that the points (3, 4), (−5, 16) and (5, 1) are collinear.
Show that the points A (1, −2, −8), B (5, 0, −2) and C (11, 3, 7) are collinear, and find the ratio in which B divides AC.
Prove that the following vectors are non-coplanar:
Prove that the following vectors are non-coplanar:
If \[\vec{a}\], \[\vec{a}\], \[\vec{c}\] are non-coplanar vectors, prove that the following vectors are non-coplanar: \[2 \vec{a} - \vec{b} + 3 \vec{c} , \vec{a} + \vec{b} - 2 \vec{c}\text{ and }\vec{a} + \vec{b} - 3 \vec{c}\]
If \[\vec{a}\], \[\vec{a}\], \[\vec{c}\] are non-coplanar vectors, prove that the following vectors are non-coplanar: \[\vec{a} + 2 \vec{b} + 3 \vec{c} , 2 \vec{a} + \vec{b} + 3 \vec{c}\text{ and }\vec{a} + \vec{b} + \vec{c}\]
If \[\vec{a} \cdot \text{i} = \vec{a} \cdot \left( \hat{i} + \hat{j} \right) = \vec{a} \cdot \left( \hat{i} + \hat{j} + \hat{k} \right) = 1,\] then \[\vec{a} =\]
If \[\vec{a} + \vec{b} + \vec{c} = \vec{0} , \left| \vec{a} \right| = 3, \left| \vec{b} \right| = 5, \left| \vec{c} \right| = 7,\] then the angle between \[\vec{a} \text{ and } \vec{b}\] is
If the position vectors of P and Q are \[\hat{i} + 3 \hat{j} - 7 \hat{k} \text{ and } 5 \text{i} - 2 \hat{j} + 4 \hat{k}\] then the cosine of the angle between \[\vec{PQ}\] and y-axis is
If the vectors `hati - 2xhatj + 3 yhatk and hati + 2xhatj - 3yhatk` are perpendicular, then the locus of (x, y) is ______.
The vector component of \[\vec{b}\] perpendicular to \[\vec{a}\] is
What is the length of the longer diagonal of the parallelogram constructed on \[5 \vec{a} + 2 \vec{b} \text{ and } \vec{a} - 3 \vec{b}\] if it is given that \[\left| \vec{a} \right| = 2\sqrt{2}, \left| \vec{b} \right| = 3\] and the angle between \[\vec{a} \text{ and } \vec{b}\] is π/4?
If \[\vec{a}\] is a non-zero vector of magnitude 'a' and λ is a non-zero scalar, then λ \[\vec{a}\] is a unit vector if
If θ is the angle between two vectors `veca` and `vecb` then, `veca * vecb` ≥ 0, only when
If \[\vec{a} , \vec{b} , \vec{c}\] are any three mutually perpendicular vectors of equal magnitude a, then \[\left| \vec{a} + \vec{b} + \vec{c} \right|\] is equal to
If the vectors \[3 \hat{i} + \lambda \hat{j} + \hat{k} \text{ and } 2 \hat{i} - \hat{j} + 8 \hat{k}\] are perpendicular, then λ is equal to
The projection of the vector \[\hat{i} + \hat{j} + \hat{k}\] along the vector of \[\hat{j}\] is
The vectors \[2 \hat{i} + 3 \hat{j} - 4 \hat{k}\] and \[a \hat{i} + \hat{b} j + c \hat{k}\] are perpendicular if
If \[\left| \vec{a} \right| = \left| \vec{b} \right|, \text{ then } \left( \vec{a} + \vec{b} \right) \cdot \left( \vec{a} - \vec{b} \right) =\]
If \[\vec{a} \text{ and } \vec{b}\] are unit vectors inclined at an angle θ, then the value of \[\left| \vec{a} - \vec{b} \right|\]
If \[\vec{a} \text{ and } \vec{b}\] are unit vectors, then the greatest value of \[\sqrt{3}\left| \vec{a} + \vec{b} \right| + \left| \vec{a} - \vec{b} \right|\]
If the angle between the vectors \[x \hat{i} + 3 \hat{j}- 7 \hat{k} \text{ and } x \hat{i} - x \hat{j} + 4 \hat{k}\] is acute, then x lies in the interval
If \[\vec{a} \text{ and } \vec{b}\] are two unit vectors inclined at an angle θ, such that \[\left| \vec{a} + \vec{b} \right| < 1,\] then
Let \[\vec{a} , \vec{b} , \vec{c}\] be three unit vectors, such that \[\left| \vec{a} + \vec{b} + \vec{c} \right|\] =1 and \[\vec{a}\] is perpendicular to \[\vec{b}\] If \[\vec{c}\] makes angles α and β with \[\vec{a} and \vec{b}\] respectively, then cos α + cos β =
The orthogonal projection of \[\vec{a} \text{ on } \vec{b}\] is
If θ is an acute angle and the vector (sin θ) \[\text{i}\] + (cos θ) \[\hat{j}\] is perpendicular to the vector \[\hat{i} - \sqrt{3} \hat{j} ,\] then θ =
In Figure ABCD is a regular hexagon, which vectors are:
(i) Collinear
(ii) Equal
(iii) Coinitial
(iv) Collinear but not equal.