मराठी

If → a and → B Are Two Unit Vectors Inclined at an Angle θ, Such that ∣ ∣ → a + → B ∣ ∣ < 1 , Then - Mathematics

Advertisements
Advertisements

प्रश्न

If \[\vec{a} \text{ and } \vec{b}\] are two unit vectors inclined at an angle θ, such that \[\left| \vec{a} + \vec{b} \right| < 1,\] then 

पर्याय

  • (a) \[\theta < \frac{\pi}{3}\] 

     

  • (b) \[\theta > \frac{2\pi}{3}\] 

  • (c) \[\frac{\pi}{3} < \theta < \frac{2\pi}{3}\] 

  • (d) \[\frac{2\pi}{3} < \theta < \pi\] 

MCQ

उत्तर

(d) \[\frac{2\pi}{3} < \theta < \pi\] 

\[\text{ We have }\]
\[\left| \vec{a} + \vec{b} \right| < 1\]
\[ \Rightarrow \sqrt{\left| \vec{a} \right|^2 + \left| \vec{b} \right|^2 + 2\left| \vec{a} \right| \times \left| \vec{b} \right| \cos\theta} < 1\]
\[ \Rightarrow \sqrt{1^2 + 1^2 + 2 \times 1 \times 1 \times \cos\theta} < 1\]
\[ \Rightarrow \sqrt{2 + 2 \cos\theta} < 1\]
\[ \Rightarrow \sqrt{2\left( 1 + \cos\theta \right)} < 1\]
\[ \Rightarrow \sqrt{2 \times 2 \cos^2 \frac{\theta}{2}} < 1\]
\[ \Rightarrow 2\left| \cos\frac{\theta}{2} \right| < 1\]
\[ \Rightarrow \left| \cos\frac{\theta}{2} \right| < \frac{1}{2}\]
\[ \Rightarrow \frac{\pi}{3} < \frac{\theta}{2} < \frac{2\pi}{3}\]
\[ \Rightarrow \frac{2\pi}{3} < \theta < \frac{4\pi}{3}\]
\[\text{ But here } \theta \text{ cannot be more than } \pi . \]
\[ \therefore \frac{2\pi}{3} < \theta < \pi\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 24: Scalar Or Dot Product - MCQ [पृष्ठ ५०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 24 Scalar Or Dot Product
MCQ | Q 22 | पृष्ठ ५०

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Classify the following as scalars and vector quantities:
(i) Time period
(ii) Distance
(iii) displacement
(iv) Force
(v) Work
(vi) Velocity
(vii) Acceleration


Answer the following as true or false:
Zero vector is unique.


Answer the following as true or false:
Two vectors having same magnitude are collinear.


Answer the following as true or false:
Two collinear vectors having the same magnitude are equal.


If \[\vec{a}\] and \[\vec{b}\] are two non-collinear vectors having the same initial point. What are the vectors represented by \[\vec{a}\] + \[\vec{b}\]  and \[\vec{a}\] − \[\vec{b}\].

 


If \[\vec{a}\] is a vector and m is a scalar such that m \[\vec{a}\] = \[\vec{0}\], then what are the alternatives for m and \[\vec{a}\] ?

 


If O is a point in space, ABC is a triangle and D, E, F are the mid-points of the sides BC, CA and AB respectively of the triangle, prove that \[\vec{OA} + \vec{OB} + \vec{OC} = \vec{OD} + \vec{OE} + \vec{OF}\]


Show that the points (3, 4), (−5, 16) and (5, 1) are collinear.


If the vectors \[\vec{a} = 2 \hat{i} - 3 \hat{j}\] and \[\vec{b} = - 6 \hat{i} + m \hat{j}\] are collinear, find the value of m.


Show that the points A (1, −2, −8), B (5, 0, −2) and C (11, 3, 7) are collinear, and find the ratio in which B divides AC.


Using vectors show that the points A (−2, 3, 5), B (7, 0, −1) C (−3, −2, −5) and D (3, 4, 7) are such that AB and CD intersect at the point P (1, 2, 3).


Prove that the following vectors are coplanar:
\[\hat{i} + \hat{j} + \hat{k} , 2 \hat{i} + 3 \hat{j} - \hat{k}\text{ and }- \hat{i} - 2 \hat{j} + 2 \hat{k}\]


Prove that the following vectors are non-coplanar:

\[3 \hat{i} + \hat{j} - \hat{k} , 2 \hat{i} - \hat{j} + 7 \hat{k}\text{ and }7 \hat{i} - \hat{j} + 23 \hat{k}\]

Prove that the following vectors are non-coplanar:

\[\hat{i} + 2 \hat{j} + 3 \hat{k} , 2 \hat{i} + \hat{j} + 3 \hat{k}\text{ and }\hat{i} + \hat{j} + \hat{k}\]

Show that the vectors \[\vec{a,} \vec{b,} \vec{c}\] given by \[\vec{a} = \hat{i} + 2 \hat{j} + 3 \hat{k} , \vec{b} = 2 \hat{i} + \hat{j} + 3 \hat{k}\text{ and }\vec{c} = \hat{i} + \hat{j} + \hat{k}\]  are non coplanar.
Express vector \[\vec{d} = 2 \hat{i}-j-  3 \hat{k} , \text{ and }\text { as  a linear combination of the vectors } \vec{a,} \vec{b}\text{ and }\vec{c} .\]


The vectors \[\vec{a} \text{ and } \vec{b}\] satisfy the equations \[2 \vec{a} + \vec{b} = \vec{p} \text{ and } \vec{a} + 2 \vec{b} = \vec{q} , \text{ where } \vec{p} = \hat{i} + \hat{j} \text{ and } \vec{q} = \hat{i} - \hat{j} .\] the angle between \[\vec{a} \text{ and } \vec{b}\] then 


If \[\vec{a} \cdot \text{i} = \vec{a} \cdot \left( \hat{i} + \hat{j} \right) = \vec{a} \cdot \left( \hat{i} + \hat{j} + \hat{k} \right) = 1,\]  then \[\vec{a} =\] 


Let \[\vec{a} \text{ and } \vec{b}\]  be two unit vectors and α be the angle between them. Then, \[\vec{a} + \vec{b}\] is a unit vector if 


If the position vectors of P and Q are \[\hat{i} + 3 \hat{j} - 7 \hat{k} \text{ and } 5 \text{i} - 2 \hat{j} + 4 \hat{k}\] then the cosine of the angle between \[\vec{PQ}\] and y-axis is 


If \[\vec{a} \text{ and } \vec{b}\] are unit vectors, then which of the following values of \[\vec{a} . \vec{b}\] is not possible? 


The vector component of \[\vec{b}\] perpendicular to \[\vec{a}\] is 


What is the length of the longer diagonal of the parallelogram constructed on \[5 \vec{a} + 2 \vec{b} \text{ and } \vec{a} - 3 \vec{b}\] if it is given that \[\left| \vec{a} \right| = 2\sqrt{2}, \left| \vec{b} \right| = 3\] and the angle between \[\vec{a} \text{ and } \vec{b}\] is π/4? 


The projection of the vector \[\hat{i} + \hat{j} + \hat{k}\] along the vector of \[\hat{j}\] is


The vectors \[2 \hat{i} + 3 \hat{j} - 4 \hat{k}\] and \[a \hat{i} + \hat{b} j + c \hat{k}\] are perpendicular if 


If \[\vec{a} \text{ and } \vec{b}\] are unit vectors inclined at an angle θ, then the value of \[\left| \vec{a} - \vec{b} \right|\] 


If \[\vec{a} \text{ and } \vec{b}\] are unit vectors, then the greatest value of \[\sqrt{3}\left| \vec{a} + \vec{b} \right| + \left| \vec{a} - \vec{b} \right|\] 


If the angle between the vectors \[x \hat{i} + 3 \hat{j}- 7 \hat{k} \text{ and } x \hat{i} - x \hat{j} + 4 \hat{k}\] is acute, then x lies in the interval 


The orthogonal projection of \[\vec{a} \text{ on } \vec{b}\] is 


If θ is an acute angle and the vector (sin θ) \[\text{i}\]  + (cos θ) \[\hat{j}\]  is perpendicular to the vector \[\hat{i} - \sqrt{3} \hat{j} ,\] then θ = 


If \[\vec{a} \text{ and }\vec{b}\] be two unit vectors and θ the angle between them, then \[\vec{a} + \vec{b}\] is a unit vector if θ = 


In Figure ABCD is a regular hexagon, which vectors are:
(i) Collinear
(ii) Equal
(iii) Coinitial
(iv) Collinear but not equal.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×