Advertisements
Advertisements
प्रश्न
If \[\vec{a} \text{ and } \vec{b}\] are unit vectors, then the greatest value of \[\sqrt{3}\left| \vec{a} + \vec{b} \right| + \left| \vec{a} - \vec{b} \right|\]
पर्याय
(a) 2
(b) \[2\sqrt{2}\]
(c) 4
(d) None of these
उत्तर
(c) 4
\[\text{ We have }\]
\[\sqrt{3}\left| \vec{a} + \vec{b} \right| + \left| \vec{a} - \vec{b} \right|\]
\[ = \sqrt{3} \times \sqrt{\left| \vec{a} \right|^2 + \left| \vec{b} \right|^2 + 2\left| \vec{a} \right|\left| \vec{b} \right|\cos\theta} + \sqrt{\left| \vec{a} \right|^2 + \left| \vec{b} \right|^2 - 2\left| \vec{a} \right|\left| \vec{b} \right|\cos\theta}\]
\[ = \sqrt{3} \times \sqrt{1^2 + 1^2 + 2 \times 1 \times 1\cos\theta} + \sqrt{1^2 + 1^2 - 2 \times 1 \times 1 \cos\theta} \left( As \vec{a} and \vec{b} unit vectors \right)\]
\[ = \sqrt{3} \times \sqrt{2 + 2 \cos\theta} + \sqrt{2 - 2 \cos\theta}\]
\[ = \sqrt{3} \times \sqrt{2\left( 1 + \cos\theta \right)} + \sqrt{2\left( 1 - \cos\theta \right)}\]
\[ = \sqrt{3} \times \sqrt{2 \times 2 \cos^2 \frac{\theta}{2}} + \sqrt{2 \times 2 \sin^2 \frac{\theta}{2}}\]
\[ = 2\sqrt{3} \cos\frac{\theta}{2} + 2\sin \frac{\theta}{2}\]
\[ = 2\left( \sqrt{3} \cos\frac{\theta}{2} + \sin \frac{\theta}{2} \right)\]
\[ = 2 \times 2\left( \frac{\sqrt{3}}{2} \cos\frac{\theta}{2} + \frac{1}{2}\sin \frac{\theta}{2} \right)\]
\[ = 2 \times 2\left( \sin\frac{\pi}{3} \cos\frac{\theta}{2} + \cos\frac{\pi}{3}\sin \frac{\theta}{2} \right)\]
\[ = 4 \sin\left( \frac{\pi}{3} + \frac{\theta}{2} \right)\]
\[\text{ Now, maximum value of } \sin\alpha = 1\]
\[ \Rightarrow \text{ Maximum value of } \sin\left( \frac{\pi}{3} + \frac{\theta}{2} \right) = 1\]
\[ \Rightarrow \text{ Maximum value of 4 }\sin\left( \frac{\pi}{3} + \frac{\theta}{2} \right) = 4\]
\[ \therefore \text{ Maximum value of } \sqrt{3}\left| \vec{a} + \vec{b} \right| + \left| \vec{a} - \vec{b} \right| = 4\]
APPEARS IN
संबंधित प्रश्न
Classify the following measures as scalars and vectors:
(i) 15 kg
(ii) 20 kg weight
(iii) 45°
(iv) 10 meters south-east
(v) 50 m/sec2
Classify the following as scalars and vector quantities:
(i) Time period
(ii) Distance
(iii) displacement
(iv) Force
(v) Work
(vi) Velocity
(vii) Acceleration
Answer the following as true or false:
Two vectors having same magnitude are collinear.
Answer the following as true or false:
Two collinear vectors having the same magnitude are equal.
If \[\vec{a}\] is a vector and m is a scalar such that m \[\vec{a}\] = \[\vec{0}\], then what are the alternatives for m and \[\vec{a}\] ?
Five forces \[\overrightarrow{AB,} \overrightarrow { AC,} \overrightarrow{ AD,}\overrightarrow{AE}\] and \[\overrightarrow{AF}\] act at the vertex of a regular hexagon ABCDEF. Prove that the resultant is 6 \[\overrightarrow{AO,}\] where O is the centre of hexagon.
If O is a point in space, ABC is a triangle and D, E, F are the mid-points of the sides BC, CA and AB respectively of the triangle, prove that \[\vec{OA} + \vec{OB} + \vec{OC} = \vec{OD} + \vec{OE} + \vec{OF}\]
Show that the points (3, 4), (−5, 16) and (5, 1) are collinear.
If the vectors \[\vec{a} = 2 \hat{i} - 3 \hat{j}\] and \[\vec{b} = - 6 \hat{i} + m \hat{j}\] are collinear, find the value of m.
Using vectors show that the points A (−2, 3, 5), B (7, 0, −1) C (−3, −2, −5) and D (3, 4, 7) are such that AB and CD intersect at the point P (1, 2, 3).
If \[\vec{a}\], \[\vec{b}\], \[\vec{c}\] are non-zero, non-coplanar vectors, prove that the following vectors are coplanar:
(1) \[5 \vec{a} + 6 \vec{b} + 7 \vec{c,} 7 \vec{a} - 8 \vec{b} + 9 \vec{c}\text{ and }3 \vec{a} + 20 \vec{b} + 5 \vec{c}\]
Prove that the following vectors are coplanar:
\[\hat{i} + \hat{j} + \hat{k} , 2 \hat{i} + 3 \hat{j} - \hat{k}\text{ and }- \hat{i} - 2 \hat{j} + 2 \hat{k}\]
Prove that the following vectors are non-coplanar:
If \[\vec{a}\], \[\vec{a}\], \[\vec{c}\] are non-coplanar vectors, prove that the following vectors are non-coplanar: \[\vec{a} + 2 \vec{b} + 3 \vec{c} , 2 \vec{a} + \vec{b} + 3 \vec{c}\text{ and }\vec{a} + \vec{b} + \vec{c}\]
The vectors \[\vec{a} \text{ and } \vec{b}\] satisfy the equations \[2 \vec{a} + \vec{b} = \vec{p} \text{ and } \vec{a} + 2 \vec{b} = \vec{q} , \text{ where } \vec{p} = \hat{i} + \hat{j} \text{ and } \vec{q} = \hat{i} - \hat{j} .\] the angle between \[\vec{a} \text{ and } \vec{b}\] then
If \[\vec{a} \cdot \text{i} = \vec{a} \cdot \left( \hat{i} + \hat{j} \right) = \vec{a} \cdot \left( \hat{i} + \hat{j} + \hat{k} \right) = 1,\] then \[\vec{a} =\]
If \[\vec{a} + \vec{b} + \vec{c} = \vec{0} , \left| \vec{a} \right| = 3, \left| \vec{b} \right| = 5, \left| \vec{c} \right| = 7,\] then the angle between \[\vec{a} \text{ and } \vec{b}\] is
Let \[\vec{a} \text{ and } \vec{b}\] be two unit vectors and α be the angle between them. Then, \[\vec{a} + \vec{b}\] is a unit vector if
If the position vectors of P and Q are \[\hat{i} + 3 \hat{j} - 7 \hat{k} \text{ and } 5 \text{i} - 2 \hat{j} + 4 \hat{k}\] then the cosine of the angle between \[\vec{PQ}\] and y-axis is
If \[\vec{a} \text{ and } \vec{b}\] are unit vectors, then which of the following values of \[\vec{a} . \vec{b}\] is not possible?
The vector component of \[\vec{b}\] perpendicular to \[\vec{a}\] is
What is the length of the longer diagonal of the parallelogram constructed on \[5 \vec{a} + 2 \vec{b} \text{ and } \vec{a} - 3 \vec{b}\] if it is given that \[\left| \vec{a} \right| = 2\sqrt{2}, \left| \vec{b} \right| = 3\] and the angle between \[\vec{a} \text{ and } \vec{b}\] is π/4?
If θ is the angle between two vectors `veca` and `vecb` then, `veca * vecb` ≥ 0, only when
If the vectors \[3 \hat{i} + \lambda \hat{j} + \hat{k} \text{ and } 2 \hat{i} - \hat{j} + 8 \hat{k}\] are perpendicular, then λ is equal to
The projection of the vector \[\hat{i} + \hat{j} + \hat{k}\] along the vector of \[\hat{j}\] is
The vectors \[2 \hat{i} + 3 \hat{j} - 4 \hat{k}\] and \[a \hat{i} + \hat{b} j + c \hat{k}\] are perpendicular if
If the angle between the vectors \[x \hat{i} + 3 \hat{j}- 7 \hat{k} \text{ and } x \hat{i} - x \hat{j} + 4 \hat{k}\] is acute, then x lies in the interval
If \[\vec{a} \text{ and } \vec{b}\] are two unit vectors inclined at an angle θ, such that \[\left| \vec{a} + \vec{b} \right| < 1,\] then
Let \[\vec{a} , \vec{b} , \vec{c}\] be three unit vectors, such that \[\left| \vec{a} + \vec{b} + \vec{c} \right|\] =1 and \[\vec{a}\] is perpendicular to \[\vec{b}\] If \[\vec{c}\] makes angles α and β with \[\vec{a} and \vec{b}\] respectively, then cos α + cos β =
If θ is an acute angle and the vector (sin θ) \[\text{i}\] + (cos θ) \[\hat{j}\] is perpendicular to the vector \[\hat{i} - \sqrt{3} \hat{j} ,\] then θ =
If \[\vec{a} \text{ and }\vec{b}\] be two unit vectors and θ the angle between them, then \[\vec{a} + \vec{b}\] is a unit vector if θ =
In Figure ABCD is a regular hexagon, which vectors are:
(i) Collinear
(ii) Equal
(iii) Coinitial
(iv) Collinear but not equal.