Advertisements
Online Mock Tests
Chapters
2: Functions
3: Binary Operations
4: Inverse Trigonometric Functions
5: Algebra of Matrices
6: Determinants
7: Adjoint and Inverse of a Matrix
8: Solution of Simultaneous Linear Equations
9: Continuity
10: Differentiability
11: Differentiation
12: Higher Order Derivatives
13: Derivative as a Rate Measurer
14: Differentials, Errors and Approximations
15: Mean Value Theorems
16: Tangents and Normals
17: Increasing and Decreasing Functions
18: Maxima and Minima
19: Indefinite Integrals
20: Definite Integrals
21: Areas of Bounded Regions
22: Differential Equations
▶ 23: Algebra of Vectors
24: Scalar Or Dot Product
25: Vector or Cross Product
26: Scalar Triple Product
27: Direction Cosines and Direction Ratios
28: Straight Line in Space
29: The Plane
30: Linear programming
31: Probability
32: Mean and Variance of a Random Variable
33: Binomial Distribution
![RD Sharma solutions for Mathematics [English] Class 12 chapter 23 - Algebra of Vectors RD Sharma solutions for Mathematics [English] Class 12 chapter 23 - Algebra of Vectors - Shaalaa.com](/images/9788193663011-mathematics-english-class-12_6:be05c27f33094688837f0fdb2cb69ac3.jpg)
Advertisements
Solutions for Chapter 23: Algebra of Vectors
Below listed, you can find solutions for Chapter 23 of CBSE, Karnataka Board PUC RD Sharma for Mathematics [English] Class 12.
RD Sharma solutions for Mathematics [English] Class 12 23 Algebra of Vectors Exercise 23.1 [Page 4]
Represent the following graphically:
(i) a displacement of 40 km, 30° east of north
(ii) a displacement of 50 km south-east
(iii) a displacement of 70 km, 40° north of west.
Classify the following measures as scalars and vectors:
(i) 15 kg
(ii) 20 kg weight
(iii) 45°
(iv) 10 meters south-east
(v) 50 m/sec2
Classify the following as scalars and vector quantities:
(i) Time period
(ii) Distance
(iii) displacement
(iv) Force
(v) Work
(vi) Velocity
(vii) Acceleration
In Figure ABCD is a regular hexagon, which vectors are:
(i) Collinear
(ii) Equal
(iii) Coinitial
(iv) Collinear but not equal.
Answer the following as true or false:
\[\vec{a}\] and \[\vec{a}\] are collinear.
True
False
Answer the following as true or false:
Two collinear vectors are always equal in magnitude.
true
False
Answer the following as true or false:
Zero vector is unique.
true
false
Answer the following as true or false:
Two vectors having same magnitude are collinear.
true
false
Answer the following as true or false:
Two collinear vectors having the same magnitude are equal.
true
false
RD Sharma solutions for Mathematics [English] Class 12 23 Algebra of Vectors Exercise 23.2 [Page 17]
If P, Q and R are three collinear points such that \[\overrightarrow{PQ} = \vec{a}\] and \[\overrightarrow{QR} = \vec{b}\]. Find the vector \[\overrightarrow{PR}\].
Give a condition that three vectors \[\vec{a}\], \[\vec{b}\] and \[\vec{c}\] form the three sides of a triangle. What are the other possibilities?
If \[\vec{a}\] and \[\vec{b}\] are two non-collinear vectors having the same initial point. What are the vectors represented by \[\vec{a}\] + \[\vec{b}\] and \[\vec{a}\] − \[\vec{b}\].
If \[\vec{a}\] is a vector and m is a scalar such that m \[\vec{a}\] = \[\vec{0}\], then what are the alternatives for m and \[\vec{a}\] ?
If \[\vec{a,} \vec{b}\] are two vectors, then write the truth value of the following statement:
\[\vec{a} = - \vec{b} \Rightarrow \left| \vec{a} \right| = \left| \vec{b} \right|\]
If \[\vec{a,} \vec{b}\] are two vectors, then write the truth value of the following statement:
\[|\vec{a}| = |\vec{b}| \Rightarrow \vec{a} = ± \vec{b} \]
If \[\vec{a,} \vec{b}\] are two vectors, then write the truth value of the following statement:
\[\left| \vec{a} \right| = \left| \vec{b} \right| \Rightarrow \vec{a} = \vec{b}\]
ABCD is a quadrilateral. Find the sum the vectors \[\overrightarrow{BA} , \overrightarrow{BC} , \overrightarrow{CD}\] and \[\overrightarrow{DA}\]
ABCDE is a pentagon, prove that
\[\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CD} + \overrightarrow{DE} + \overrightarrow{EA} = \overrightarrow{0}\]
ABCDE is a pentagon, prove that
\[\overrightarrow{AB} + \overrightarrow{AE} + \overrightarrow{BC} + \overrightarrow{DC} + \overrightarrow{ED} + \overrightarrow{AC} = 3\overrightarrow{AC}\]
Prove that the sum of all vectors drawn from the centre of a regular octagon to its vertices is the zero vector.
If P is a point and ABCD is a quadrilateral and \[\overrightarrow{AP} + \overrightarrow{PB} + \overrightarrow{PD} = \overrightarrow{PC}\], show that ABCD is a parallelogram.
Five forces \[\overrightarrow{AB,} \overrightarrow { AC,} \overrightarrow{ AD,}\overrightarrow{AE}\] and \[\overrightarrow{AF}\] act at the vertex of a regular hexagon ABCDEF. Prove that the resultant is 6 \[\overrightarrow{AO,}\] where O is the centre of hexagon.
RD Sharma solutions for Mathematics [English] Class 12 23 Algebra of Vectors Exercise 23.3 [Pages 23 - 24]
Find the position vector of a point R which divides the line joining the two points P and Q with position vectors \[\vec{OP} = 2 \vec{a} + \vec{b}\] and \[\vec{OQ} = \vec{a} - 2 \vec{b}\], respectively in the ratio 1 : 2 internally and externally.
Let \[\vec{a,} \vec{b,} \vec{c,} \vec{d}\] be the position vectors of the four distinct points A, B, C, D. If \[\vec{b} - \vec{a} = \vec{c} - \vec{d}\], then show that ABCD is a parallelogram.
If \[\vec{a,} \vec{b}\] are the position vectors of A, B respectively, find the position vector of a point C in AB produced such that AC = 3 AB and that a point D in BA produced such that BD = 2BA.
Show that the four points A, B, C, D with position vectors \[\vec{a,} \vec{b,} \vec{c,} \vec{d}\] respectively such that \[3 \vec{a} - 2 \vec{b} + 5 \vec{c} - 6 \vec{d} = 0,\] are coplanar. Also, find the position vector of the point of intersection of the line segments AC and BD.
Show that the four points P, Q, R, S with position vectors \[\vec{p}\], \[\vec{q}\], \[\vec{r}\], \[\vec{s}\] respectively such that 5 \[\vec{p}\] − 2 \[\vec{q}\] + 6 \[\vec{r}\] − 9 \[\vec{s}\] \[\vec{0}\], are coplanar. Also, find the position vector of the point of intersection of the line segments PR and QS.
The vertices A, B, C of triangle ABC have respectively position vectors \[\vec{a}\], \[\vec{b}\], \[\vec{c}\] with respect to a given origin O. Show that the point D where the bisector of ∠ A meets BC has position vector \[\vec{d} = \frac{\beta \vec{b} + \gamma \vec{c}}{\beta + \gamma},\text{ where }\beta = \left| \vec{c} - \vec{a} \right| \text{ and, }\gamma = \left| \vec{a} - \vec{b} \right|\]
Hence, deduce that the incentre I has position vector
\[\frac{\alpha \vec{a} + \beta \vec{b} + \gamma \vec{c}}{\alpha + \beta + \gamma},\text{ where }\alpha = \left| \vec{b} - \vec{c} \right|\]
RD Sharma solutions for Mathematics [English] Class 12 23 Algebra of Vectors Exercise 23.4 [Pages 36 - 37]
If O is a point in space, ABC is a triangle and D, E, F are the mid-points of the sides BC, CA and AB respectively of the triangle, prove that \[\vec{OA} + \vec{OB} + \vec{OC} = \vec{OD} + \vec{OE} + \vec{OF}\]
Show that the sum of three vectors determined by the medians of a triangle directed from the vertices is zero.
ABCD is a parallelogram and P is the point of intersection of its diagonals. If O is the origin of reference, show that
\[\vec{OA} + \vec{OB} + \vec{OC} + \vec{OD} = 4 \vec{OP}\]
Show that the line segments joining the mid-points of opposite sides of a quadrilateral bisects each other.
ABCD are four points in a plane and Q is the point of intersection of the lines joining the mid-points of AB and CD; BC and AD. Show that\[\vec{PA} + \vec{PB} + \vec{PC} + \vec{PD} = 4 \vec{PQ}\], where P is any point.
Prove by vector method that the internal bisectors of the angles of a triangle are concurrent.
RD Sharma solutions for Mathematics [English] Class 12 23 Algebra of Vectors Exercise 23.4 [Pages 42 - 43]
If the position vector of a point (−4, −3) be \[\vec{a,}\] find \[\left| \vec{a} \right|\]
If the position vector \[\vec{a}\] of a point (12, n) is such that \[\left| \vec{a} \right|\] = 13, find the value (s) of n.
Find a vector of magnitude 4 units which is parallel to the vector \[\sqrt{3} \hat{i} + \hat{j}\]
Express \[\vec{AB}\] in terms of unit vectors \[\hat{i}\] and \[\hat{j}\], when the points are A (4, −1), B (1, 3)
Find \[\left| \vec{A} B \right|\] in each case.
Express \[\vec{AB}\] in terms of unit vectors \[\hat{i}\] and \[\hat{j}\], when the points are A (−6, 3), B (−2, −5)
Find \[\left| \vec{A} B \right|\] in each case.
Find the coordinates of the tip of the position vector which is equivalent to \[\vec{A} B\], where the coordinates of A and B are (−1, 3) and (−2, 1) respectively.
ABCD is a parallelogram. If the coordinates of A, B, C are (−2, −1), (3, 0) and (1, −2) respectively, find the coordinates of D.
If the position vectors of the points A (3, 4), B (5, −6) and C (4, −1) are \[\vec{a,}\] \[\vec{b,}\] \[\vec{c}\] respectively, compute \[\vec{a} + 2 \vec{b} - 3 \vec{c}\].
If \[\vec{a}\] be the position vector whose tip is (5, −3), find the coordinates of a point B such that \[\overrightarrow{AB} =\] \[\vec{a}\], the coordinates of A being (4, −1).
Show that the points 2 \[\hat{i}, - \hat{i}-4 \] \[\hat{j}\] and \[-\hat{i}+4\hat{j}\] form an isosceles triangle.
Find a unit vector parallel to the vector \[\hat{i} + \sqrt{3} \hat{j}\]
The position vectors of points A, B and C are \[\lambda \hat{i} +\] 3 \[\hat{j}\],12\[\hat{i} + \mu\] \[\hat{j}\] and 11\[\hat{i} -\] 3 \[\hat{j}\] respectively. If C divides the line segment joining A and B in the ratio 3:1, find the values of \[\lambda\] and \[\mu\]
Find the components along the coordinate axes of the position vector of the following point :
P(3, 2)
Find the components along the coordinate axes of the position vector of the following point :
Q(–5, 1)
Find the components along the coordinate axes of the position vector of the following point :
R(–11, –9)
Find the components along the coordinate axes of the position vector of the following point :
S(4, –3)
RD Sharma solutions for Mathematics [English] Class 12 23 Algebra of Vectors Exercise 23.6 [Pages 48 - 49]
Find the magnitude of the vector \[\vec{a} = 2 \hat{i} + 3 \hat{j} - 6 \hat{k} .\]
Find the unit vector in the direction of \[3 \hat{i} + 4 \hat{j} - 12 \hat{k} .\]
Find a unit vector in the direction of the resultant of the vectors
\[\hat{i} - \hat{j} + 3 \hat{k} , 2 \hat{i} + \hat{j} - 2 \hat{k} \text{ and }\hat{i} + 2 \hat{j} - 2 \hat{k} .\]
The adjacent sides of a parallelogram are represented by the vectors \[\vec{a} = \hat{i} + \hat{j} - \hat{k}\text{ and }\vec{b} = - 2 \hat{i} + \hat{j} + 2 \hat{k} .\]
Find unit vectors parallel to the diagonals of the parallelogram.
If \[\overrightarrow{PQ} = 3 \hat{i} + 2 \hat{j} - \hat{k}\] and the coordinates of P are (1, −1, 2), find the coordinates of Q.
Prove that the points \[\hat{i} - \hat{j} , 4 \hat{i} + 3 \hat{j} + \hat{k} \text{ and }2 \hat{i} - 4 \hat{j} + 5 \hat{k}\] are the vertices of a right-angled triangle.
If the vertices of a triangle are the points with position vectors \[a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k} , b_1 \hat{i} + b_2 \hat{j} + b_3 \hat{k} , c_1 \hat{i} + c_2 \hat{j} + c_3 \hat{k} ,\]
what are the vectors determined by its sides? Find the length of these vectors.
Find the vector from the origin O to the centroid of the triangle whose vertices are (1, −1, 2), (2, 1, 3) and (−1, 2, −1).
Find the position vector of a point R which divides the line segment joining points \[P \left( \hat{i} + 2 \hat{j} + \hat{k} \right) \text{ and Q }\left( - \hat{i} + \hat{j} + \hat{k} \right)\] internally 2:1.
Find the position vector of a point R which divides the line segment joining points:
\[P \left( \hat{i} + 2 \hat{j} + \hat{k}\right) \text { and } Q \left( - \hat{i} + \hat{j} + \hat{k} \right)\] externally
Find the position vector of the mid-point of the vector joining the points
Find the unit vector in the direction of vector \[\overrightarrow{PQ} ,\]
where P and Q are the points (1, 2, 3) and (4, 5, 6).
Show that the points \[A \left( 2 \hat{i} - \hat{j} + \hat{k} \right), B \left( \hat{i} - 3 \hat{j} - 5 \hat{k} \right), C \left( 3 \hat{i} - 4 \hat{j} - 4 \hat{k} \right)\] are the vertices of a right angled triangle.
Find the position vector of the mid-point of the vector joining the points P (2, 3, 4) and Q(4, 1, −2).
Find the value of x for which \[x \left( \hat{i} + \hat{j} + \hat{k} \right)\] is a unit vector.
If \[\vec{a} = \hat{i} + \hat{j} + \hat{k} , \vec{b} = 2 \hat{i} - \hat{j} + 3 \hat{k} \text{ and }\vec{c} = \hat{i} - 2 \hat{j} + \hat{k} ,\] find a unit vector parallel to \[2 \vec{a} - \vec{b} + 3 \vec{c .}\]
If \[\vec{a} = \hat{i} + \hat{j} + \hat{k} , \vec{b} = 4 \hat{i} - 2 \hat{j} + 3 \hat{k} \text { and } \vec{c} = \hat{i} - 2 \hat{j} + \hat{k} ,\] find a vector of magnitude 6 units which is parallel to the vector \[2 \vec{a} - \vec{b} + 3 \vec{c .}\]
Find a vector of magnitude of 5 units parallel to the resultant of the vectors \[\vec{a} = 2 \hat{i} + 3 \hat{j} - \hat{k} \text{ and } \vec{b} = \hat{i} - 2 \hat{j} +\widehat{k} .\]
The two vectors \[\hat{j} + \hat{k}\] and \[3 \hat{i} - \hat{j} + 4 \hat{k}\] represents the sides \[\overrightarrow{AB}\] and \[\overrightarrow{AC}\] respectively of a triangle ABC. Find the length of the median through A.
RD Sharma solutions for Mathematics [English] Class 12 23 Algebra of Vectors Exercise 23.7 [Pages 60 - 61]
Show that the points A, B, C with position vectors \[\vec{a} - 2 \vec{b} + 3 \vec{c} , 2 \vec{a} + 3 \vec{b} - 4 \vec{c}\] and \[- 7 \vec{b} + 10 \vec{c}\] are collinear.
If \[\vec{a}\], \[\vec{b}\], \[\vec{c}\] are non-coplanar vectors, prove that the points having the following position vectors are collinear: \[\vec{a,} \vec{b,} 3 \vec{a} - 2 \vec{b}\]
If \[\vec{a}\], \[\vec{b}\], \[\vec{c}\] are non-coplanar vectors, prove that the points having the following position vectors are collinear: \[\vec{a} + \vec{b} + \vec{c} , 4 \vec{a} + 3 \vec{b} , 10 \vec{a} + 7 \vec{b} - 2 \vec{c}\]
Prove that the points having position vectors \[\hat{i} + 2 \hat{j} + 3 \hat{k} , 3 \hat{i} + 4 \hat{j} + 7 \hat{k} , - 3 \hat{i} - 2 \hat{i} - 5 \hat{k}\] are collinear.
If the points with position vectors \[10 \hat{i} + 3 \hat{j} , 12 \hat{i} - 5 \hat{j}\text{ and a }\hat{i} + 11 \hat{j}\] are collinear, find the value of a.
If \[\vec{a,} \vec{b}\] are two non-collinear vectors prove that the points with position vectors \[\vec{a} + \vec{b,} \vec{a} - \vec{b}\text{ and }\vec{a} + \lambda \vec{b}\] are collinear for all real values of λ.
If \[\overrightarrow{AO} + \overrightarrow{OB} = \overrightarrow{BO} + \overrightarrow{OC} ,\] prove that A, B, C are collinear points.
Show that the vectors \[2 \hat{i} - 3 \hat{j} + 4 \hat{k}\text{ and }- 4 \hat{i} + 6 \hat{j} - 8 \hat{k}\] are collinear.
If the points A(m, −1), B(2, 1) and C(4, 5) are collinear, find the value of m.
Show that the points (3, 4), (−5, 16) and (5, 1) are collinear.
If the vectors \[\vec{a} = 2 \hat{i} - 3 \hat{j}\] and \[\vec{b} = - 6 \hat{i} + m \hat{j}\] are collinear, find the value of m.
Show that the points A (1, −2, −8), B (5, 0, −2) and C (11, 3, 7) are collinear, and find the ratio in which B divides AC.
Using vectors show that the points A (−2, 3, 5), B (7, 0, −1) C (−3, −2, −5) and D (3, 4, 7) are such that AB and CD intersect at the point P (1, 2, 3).
Using vectors, find the value of λ such that the points (λ, −10, 3), (1, −1, 3) and (3, 5, 3) are collinear.
RD Sharma solutions for Mathematics [English] Class 12 23 Algebra of Vectors Exercise 23.8 [Pages 65 - 66]
Show that the points whose position vectors are as given below are collinear:
\[2 \hat{i} + \hat{j} - \hat{k} , 3 \hat{i} - 2 \hat{j} + \hat{k} \text{ and }\hat{i} + 4 \hat{j} - 3 \hat{k}\]
Show that the points whose position vectors are as given below are collinear: \[3 \hat{i} - 2 \hat{j} + 4 \hat{k}, \hat{i} + \hat{j} + \hat{k}\text{ and }- \hat{i} + 4 \hat{j} - 2 \hat{k}\]
Using vector method, prove that the following points are collinear:
A (6, −7, −1), B (2, −3, 1) and C (4, −5, 0)
Using vector method, prove that the following points are collinear:
A (2, −1, 3), B (4, 3, 1) and C (3, 1, 2)
Using vector method, prove that the following points are collinear:
A (1, 2, 7), B (2, 6, 3) and C (3, 10, −1)
Using vector method, prove that the following points are collinear:
A (−3, −2, −5), B (1, 2, 3) and C (3, 4, 7)
If \[\vec{a}\], \[\vec{b}\], \[\vec{c}\] are non-zero, non-coplanar vectors, prove that the following vectors are coplanar:
(1) \[5 \vec{a} + 6 \vec{b} + 7 \vec{c,} 7 \vec{a} - 8 \vec{b} + 9 \vec{c}\text{ and }3 \vec{a} + 20 \vec{b} + 5 \vec{c}\]
Show that the four points having position vectors
\[6 \hat{i} - 7 \hat{j} , 16 \hat{i} - 19 \hat{j} - 4 \hat{k} , 3 \hat{j} - 6 \hat{k} , 2 \hat{i} - 5 \hat{j} + 10 \hat{k}\] are coplanar.
Prove that the following vectors are coplanar:
\[2 \hat{i} - \hat{j} + \hat{k} , \hat{i} - 3 \hat{j} - 5 \hat{k} \text{ and }3 \hat{i} - 4 \hat{j} - 4 \hat{k}\]
Prove that the following vectors are coplanar:
\[\hat{i} + \hat{j} + \hat{k} , 2 \hat{i} + 3 \hat{j} - \hat{k}\text{ and }- \hat{i} - 2 \hat{j} + 2 \hat{k}\]
Prove that the following vectors are non-coplanar:
Prove that the following vectors are non-coplanar:
If \[\vec{a}\], \[\vec{a}\], \[\vec{c}\] are non-coplanar vectors, prove that the following vectors are non-coplanar: \[2 \vec{a} - \vec{b} + 3 \vec{c} , \vec{a} + \vec{b} - 2 \vec{c}\text{ and }\vec{a} + \vec{b} - 3 \vec{c}\]
If \[\vec{a}\], \[\vec{a}\], \[\vec{c}\] are non-coplanar vectors, prove that the following vectors are non-coplanar: \[\vec{a} + 2 \vec{b} + 3 \vec{c} , 2 \vec{a} + \vec{b} + 3 \vec{c}\text{ and }\vec{a} + \vec{b} + \vec{c}\]
Show that the vectors \[\vec{a,} \vec{b,} \vec{c}\] given by \[\vec{a} = \hat{i} + 2 \hat{j} + 3 \hat{k} , \vec{b} = 2 \hat{i} + \hat{j} + 3 \hat{k}\text{ and }\vec{c} = \hat{i} + \hat{j} + \hat{k}\] are non coplanar.
Express vector \[\vec{d} = 2 \hat{i}-j- 3 \hat{k} , \text{ and }\text { as a linear combination of the vectors } \vec{a,} \vec{b}\text{ and }\vec{c} .\]
Prove that a necessary and sufficient condition for three vectors \[\vec{a}\], \[\vec{b}\], \[\vec{c}\] to be coplanar is that there exist scalars l, m, n not all zero simultaneously such that \[l \vec{a} + m \vec{b} + n \vec{c} = \vec{0} .\]
Show that the four points A, B, C and D with position vectors \[\vec{a}\], \[\vec{b}\], \[\vec{c}\], \[\vec{d}\] respectively are coplanar if and only if \[3 \vec{a} - 2 \vec{b} + \vec{c} - 2 \vec{d} = \vec{0} .\]
RD Sharma solutions for Mathematics [English] Class 12 23 Algebra of Vectors Exercise 23.9 [Pages 73 - 74]
Can a vector have direction angles 45°, 60°, 120°?
Prove that 1, 1, 1 cannot be direction cosines of a straight line.
A vector makes an angle of \[\frac{\pi}{4}\] with each of x-axis and y-axis. Find the angle made by it with the z-axis.
A vector \[\vec{r}\] is inclined at equal acute angles to x-axis, y-axis and z-axis.
If |\[\vec{r}\]| = 6 units, find \[\vec{r}\].
A vector \[\vec{r}\] is inclined to -axis at 45° and y-axis at 60°. If \[|\vec{r}|\] = 8 units, find \[\vec{r}\].
Find the direction cosines of the following vectors:
\[2 \hat{i} + 2 \hat{j} - \hat{k}\]
Find the direction cosines of the following vectors:
\[6 \hat{i} - 2 \hat{j} - 3 \hat{k}\]
Find the direction cosines of the following vectors:
\[3 \hat{i} - 4 \hat{k}\]
Find the angles at which the following vectors are inclined to each of the coordinate axes:
\[\hat{i} - \hat{j} + \hat{k}\]
Find the angles at which the following vectors are inclined to each of the coordinate axes:
\[\hat{j} - \hat{k}\]
Find the angles at which the following vectors are inclined to each of the coordinate axes:
\[4 \hat{i} + 8 \hat{j} + \hat{k}\]
Show that the vector \[\hat{i} + \hat{j} + \hat{k}\] is equally inclined with the axes OX, OY and OZ.
Show that the direction cosines of a vector equally inclined to the axes OX, OY and OZ are \[\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}} .\]
If a unit vector \[\vec{a}\] makes an angle \[\frac{\pi}{3}\] with \[\hat{i} , \frac{\pi}{4}\] with \[\hat{j}\] and an acute angle θ with \[\hat{k}\], then find θ and hence, the components of \[\vec{a}\].
Find a vector \[\vec{r}\] of magnitude \[3\sqrt{2}\] units which makes an angle of \[\frac{\pi}{4}\] and \[\frac{\pi}{4}\] with y and z-axes respectively.
A vector \[\vec{r}\] is inclined at equal angles to the three axes. If the magnitude of \[\vec{r}\] is \[2\sqrt{3}\], find \[\vec{r}\].
RD Sharma solutions for Mathematics [English] Class 12 23 Algebra of Vectors Very Short Answers [Pages 75 - 77]
Define "zero vector".
Define unit vector.
Define position vector of a point.
Write \[\overrightarrow{PQ} + \overrightarrow{RP} + \overrightarrow{QR}\] in the simplified form.
If \[\vec{a}\] and \[\vec{b}\] are two non-collinear vectors such that \[x \vec{a} + y \vec{b} = \vec{0} ,\] then write the values of x and y.
If \[\vec{a}\] and \[\vec{b}\] represent two adjacent sides of a parallelogram, then write vectors representing its diagonals.
If \[\vec{a}\], \[\vec{b}\], \[\vec{c}\] represent the sides of a triangle taken in order, then write the value of \[\vec{a} + \vec{b} + \vec{c} .\]
If \[\vec{a}\], \[\vec{b}\], \[\vec{c}\] are position vectors of the vertices A, B and C respectively, of a triangle ABC, write the value of \[\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CA} .\]
If \[\vec{a}\], \[\vec{b}\], \[\vec{c}\] are position vectors of the points A, B and C respectively, write the value of \[\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{AC} .\]
If \[\overrightarrow{a}\], \[\overrightarrow{b}\], \[\overrightarrow{c}\] are the position vectors of the vertices of a triangle, then write the position vector of its centroid.
If G denotes the centroid of ∆ABC, then write the value of \[\overrightarrow{GA} + \overrightarrow{GB} + \overrightarrow{GC} .\]
If \[\overrightarrow{a}\] and \[\overrightarrow{b}\] denote the position vectors of points A and B respectively and C is a point on AB such that 3AC = 2AB, then write the position vector of C.
If D is the mid-point of side BC of a triangle ABC such that \[\overrightarrow{AB} + \overrightarrow{AC} = \lambda \overrightarrow{AD} ,\] write the value of λ.
If D, E, F are the mid-points of the sides BC, CA and AB respectively of a triangle ABC, write the value of \[\overrightarrow{AD} + \overrightarrow{BE} + \overrightarrow{CF} .\]
If \[\overrightarrow{a}\] is a non-zero vector of modulus a and m is a non-zero scalar such that m \[\overrightarrow{a}\] is a unit vector, write the value of m.
If \[\vec{a}\], \[\vec{b}\], \[\vec{c}\] are the position vectors of the vertices of an equilateral triangle whose orthocentre is at the origin, then write the value of \[\vec{a} + \vec{b} + \vec{c} .\]
Write a unit vector making equal acute angles with the coordinates axes.
If a vector makes angles α, β, γ with OX, OY and OZ respectively, then write the value of sin2 α + sin2 β + sin2 γ.
Write a vector of magnitude 12 units which makes 45° angle with X-axis, 60° angle with Y-axis and an obtuse angle with Z-axis.
Write the length (magnitude) of a vector whose projections on the coordinate axes are 12, 3 and 4 units.
Write the position vector of a point dividing the line segment joining points A and B with position vectors \[\vec{a}\] and \[\vec{b}\] externally in the ratio 1 : 4, where \[\overrightarrow{a} = 2 \hat{i} + 3 \hat{j} + 4 \hat{k} \text{ and }\overrightarrow{b} = - \hat{i} + \hat{j} + \hat{k} .\]
Write the direction cosines of the vector \[\overrightarrow{r} = 6 \hat{i} - 2 \hat{j} + 3 \hat{k} .\]
If \[\overrightarrow{a} = \hat{i} + \hat{j} , \vec{b} = \hat{j} + \hat{k} \text{ and }\vec{c} = \hat{k} + \hat{i} ,\] write unit vectors parallel to \[\overrightarrow{a} + \overrightarrow{b} - 2 \overrightarrow{c} .\]
If \[\overrightarrow{a} = \hat{i} + 2 \hat{j} , \vec{b} = \hat{j} + 2 \hat{k} ,\] write a unit vector along the vector \[3 \overrightarrow{a} - 2 \overrightarrow{b} .\]
Write the position vector of a point dividing the line segment joining points having position vectors \[\hat{i} + \hat{j} - 2 \hat{k} \text{ and }2 \hat{i} - \hat{j} + 3 \hat{k}\] externally in the ratio 2:3.
If \[\overrightarrow{a} = \hat{i} + \hat{j} , \overrightarrow{b} = \hat{j} + \hat{k} , \overrightarrow{c} = \hat{k} + \hat{i}\], find the unit vector in the direction of \[\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}\].
A unit vector \[\overrightarrow{r}\] makes angles \[\frac{\pi}{3}\] and \[\frac{\pi}{2}\] with \[\hat{j}\text{ and }\hat{k}\] respectively and an acute angle θ with \[\hat{i}\]. Find θ.
Write a unit vector in the direction of \[\overrightarrow{a} = 3 \hat{i} + 2 \hat{j} + 6 \hat{k} .\]
If \[\overrightarrow{a} = \hat{i} + 2 \hat{j} - 3 \hat{k} \text{ and }\overrightarrow{b} = 2 \hat{i} + 4 \hat{j} + 9 \hat{k} ,\] find a unit vector parallel to \[\overrightarrow{a} + \overrightarrow{b}\].
Write a unit vector in the direction of \[\overrightarrow{b} = 2 \hat{i} + \hat{j} + 2 \hat{k}\].
Find the position vector of the mid-point of the line segment AB, where A is the point (3, 4, −2) and B is the point (1, 2, 4).
Find a vector in the direction of \[\overrightarrow{a} = 2 \hat{i} - \hat{j} + 2 \hat{k} ,\] which has magnitude of 6 units.
What is the cosine of the angle which the vector \[\sqrt{2} \hat{i} + \hat{j} + \hat{k}\] makes with y-axis?
Write two different vectors having same magnitude.
Write two different vectors having same direction.
Write a vector in the direction of vector \[5 \hat{i} - \hat{j} + 2 \hat{k}\] which has magnitude of 8 unit.
Write the direction cosines of the vector \[\hat{i} + 2 \hat{j} + 3 \hat{k}\].
Find a unit vector in the direction of \[\overrightarrow{a} = 2 \hat{i} - 3 \hat{j} + 6 \hat{k}\].
For what value of 'a' the vectors \[2 \hat{i} - 3 \hat{j} + 4 \hat{k} \text{ and }a \hat{i} + 6 \hat{j} - 8 \hat{k}\] are collinear?
Write the direction cosines of the vectors \[- 2 \hat{i} + \hat{j} - 5 \hat{k}\].
Find the sum of the following vectors: \[\overrightarrow{a} = \hat{i} - 2 \hat{j} , \overrightarrow{b} = 2 \hat{i} - 3 \hat{j} , \overrightarrow{c} = 2 \hat{i} + 3 \hat{k} .\]
Find a unit vector in the direction of the vector \[\overrightarrow{a} = 3 \hat{i} - 2 \hat{j} + 6 \hat{k}\].
If \[\overrightarrow{a} = x \hat{i} + 2 \hat{j} - z \hat{k}\text{ and }\overrightarrow{b} = 3 \hat{i} - y \hat{j} + \hat{k}\] are two equal vectors, then write the value of x + y + z.
Write a unit vector in the direction of the sum of the vectors \[\overrightarrow{a} = 2 \hat{i} + 2 \hat{j} - 5 \hat{k}\] and \[\overrightarrow{b} = 2 \hat{i} + \hat{j} - 7 \hat{k}\].
Find the value of 'p' for which the vectors \[3 \hat{i} + 2 \hat{j} + 9 \hat{k}\] and \[\hat{i} - 2p \hat{j} + 3 \hat{k}\] are parallel.
Find a vector \[\overrightarrow{a}\] of magnitude \[5\sqrt{2}\], making an angle of \[\frac{\pi}{4}\] with x-axis, \[\frac{\pi}{2}\] with y-axis and an acute angle θ with z-axis.
Write a unit vector in the direction of \[\overrightarrow{PQ}\], where P and Q are the points (1, 3, 0) and (4, 5, 6) respectively.
Find a vector in the direction of vector \[2 \hat{i} - 3 \hat{j} + 6 \hat{k}\] which has magnitude 21 units.
If \[\left| \overrightarrow{a} \right| = 4\] and \[- 3 \leq \lambda \leq 2\], then write the range of \[\left| \lambda \vec{a} \right|\].
In a triangle OAC, if B is the mid-point of side AC and \[\overrightarrow{OA} = \overrightarrow{a} , \overrightarrow{OB} = \overrightarrow{b}\], then what is \[\overrightarrow{OC}\].
Write the position vector of the point which divides the join of points with position vectors \[3 \overrightarrow{a} - 2 \overrightarrow{b}\text{ and }2 \overrightarrow{a} + 3 \overrightarrow{b}\] in the ratio 2 : 1.
RD Sharma solutions for Mathematics [English] Class 12 23 Algebra of Vectors MCQ [Pages 78 - 79]
If in a ∆ABC, A = (0, 0), B = (3, 3 \[\sqrt{3}\]), C = (−3\[\sqrt{3}\], 3), then the vector of magnitude 2 \[\sqrt{2}\] units directed along AO, where O is the circumcentre of ∆ABC is
- \[\left( 1 - \sqrt{3} \right) \hat{i} + \left( 1 + \sqrt{3} \right) \hat{j}\]
- \[\left( 1 + \sqrt{3} \right) \hat{i} + \left( 1 - \sqrt{3} \right) \hat{j}\]
- \[\left( 1 + \sqrt{3} \right) \hat{i} + \left( \sqrt{3} - 1 \right) \hat{j}\]
none of these
If \[\vec{a} , \vec{b}\] are the vectors forming consecutive sides of a regular hexagon ABCDEF, then the vector representing side CD is
- \[\vec{a} + \vec{b}\]
- \[\vec{a} - \vec{b}\]
- \[\vec{b} - \vec{a}\]
- \[- \left( \vec{a} + \vec{b} \right)\]
Forces 3 O \[\vec{A}\], 5 O \[\vec{B}\] act along OA and OB. If their resultant passes through C on AB, then
C is a mid-point of AB
C divides AB in the ratio 2 : 1
3 AC = 5 CB
2 AC = 3 CB
If \[\vec{a} , \vec{b} , \vec{c}\] are three non-zero vectors, no two of which are collinear and the vector \[\vec{a} + \vec{b}\] is collinear with \[\vec{c} , \vec{b} + \vec{c}\] is collinear with \[\vec{a} ,\] then \[\vec{a} + \vec{b} + \vec{c} =\]
- \[\vec{a}\]
- \[\vec{b}\]
- \[\vec{c}\]
none of these
If points A (60 \[\hat{i}\] + 3 \[\hat{j}\]), B (40 \[\hat{i}\] − 8 \[\hat{j}\]) and C (a \[\hat{i}\] − 52 \[\hat{j}\]) are collinear, then a is equal to
40
−40
20
−20
If G is the intersection of diagonals of a parallelogram ABCD and O is any point, then \[O \vec{A} + O \vec{B} + O \vec{C} + O \vec{D} =\]
- \[2 \overrightarrow{OG}\]
- \[4 \overrightarrow{OG}\]
- \[5 \overrightarrow{OG}\]
- \[3 \overrightarrow{OG}\]
The vector cos α cos β \[\hat{i}\] + cos α sin β \[\hat{j}\] + sin α \[\hat{k}\] is a
null vector
unit vector
constant vector
none of these
In a regular hexagon ABCDEF, A \[\vec{B}\] = a, B \[\vec{C}\] = \[\overrightarrow{b}\text{ and }\overrightarrow{CD} = \vec{c}\].
Then, \[\overrightarrow{AE}\] =
- \[\vec{a} + \vec{b} + \vec{c}\]
\[2 \vec{a} + \vec{b} + \vec{c}\]
- \[\vec{b} + \vec{c}\]
\[\vec{a} + 2 \vec{b} + 2 \vec{c}\]
The vector equation of the plane passing through \[\vec{a} , \vec{b} , \vec{c} ,\text{ is }\vec{r} = \alpha \vec{a} + \beta \vec{b} + \gamma \vec{c} ,\] provided that
α + β + γ = 0
α + β + γ =1
α + β = γ
α2 + β2 + γ2 = 1
If O and O' are circumcentre and orthocentre of ∆ ABC, then \[\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC}\] equals
2\[\overrightarrow{OO}\]
- \[O \overrightarrow{O'}\]
- \[\overrightarrow{OO'}\]
- \[2 \overrightarrow{O'O}\]
If \[\vec{a}\], \[\vec{b}\], \[\vec{c}\] and \[\vec{d}\] are the position vectors of points A, B, C, D such that no three of them are collinear and \[\vec{a} + \vec{c} = \vec{b} + \vec{d} ,\] then ABCD is a
rhombus
rectangle
square
parallelogram
Let G be the centroid of ∆ ABC. If \[\overrightarrow{AB} = \vec{a,} \overrightarrow{AC} = \vec{b,}\] then the bisector \[\overrightarrow{AG} ,\] in terms of \[\vec{a}\text{ and }\vec{b}\] is
\[\frac{2}{3}\left( \vec{a} + \vec{b} \right)\]
- \[\frac{1}{6}\left( \vec{a} + \vec{b} \right)\]
- \[\frac{1}{3}\left( \vec{a} + \vec{b} \right)\]
- \[\frac{1}{2}\left( \vec{a} + \vec{b} \right)\]
If ABCDEF is a regular hexagon, then \[\overrightarrow{AD} + \overrightarrow{EB} + \overrightarrow{FC}\] equals
\[2 \overrightarrow{AB}\]
- \[\vec{0}\]
\[3 \overrightarrow{AB}\]
- \[4 \overrightarrow{AB}\]
The position vectors of the points A, B, C are \[2 \hat{i} + \hat{j} - \hat{k} , 3 \hat{i} - 2 \hat{j} + \hat{k}\text{ and }\hat{i} + 4 \hat{j} - 3 \hat{k}\] respectively.
These points
form an isosceles triangle
form a right triangle
are collinear
form a scalene triangle
If three points A, B and C have position vectors \[\hat{i} + x \hat{j} + 3 \hat{k} , 3 \hat{i} + 4 \hat{j} + 7 \hat{k}\text{ and }y \hat{i} - 2 \hat{j} - 5 \hat{k}\] respectively are collinear, then (x, y) =
(2, −3)
(−2, 3)
(−2, −3)
(2, 3)
ABCD is a parallelogram with AC and BD as diagonals.
Then, \[\overrightarrow{AC} - \overrightarrow{BD} =\]
\[4 \overrightarrow{AB}\]
- \[3 \overrightarrow{AB}\]
- \[2 \overrightarrow{AB}\]
- \[\overrightarrow{AB}\]
If OACB is a parallelogram with \[\overrightarrow{OC} = \vec{a}\text{ and }\overrightarrow{AB} = \vec{b} ,\] then \[\overrightarrow{OA} =\]
- \[\left( \vec{a} + \vec{b} \right)\]
- \[\left( \vec{a} - \vec{b} \right)\]
- \[\frac{1}{2}\left( \vec{b} - \vec{a} \right)\]
- \[\frac{1}{2}\left( \vec{a} - \vec{b} \right)\]
If \[\vec{a}\text{ and }\vec{b}\] are two collinear vectors, then which of the following are incorrect?
\[\vec{b} = \lambda \vec{a}\] for some scalar λ
- \[\vec{a} = \pm \vec{b}\]
the respective components of \[\vec{a}\text{ and }\vec{b}\] are proportional
both the vectors \[\vec{a}\text{ and }\vec{b}\] have the same direction but different magnitudes
In Figure, which of the following is not true?
\[\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CA} = \vec{0}\]
\[\overrightarrow{AB} + \overrightarrow{BC} - \overrightarrow{AC} = \vec{0}\]
\[\overrightarrow{AB} + \overrightarrow{BC} - \overrightarrow{CA} = \vec{0}\]
\[\overrightarrow{AB} - \overrightarrow{CB} + \overrightarrow{CA} = \vec{0}\]
Solutions for 23: Algebra of Vectors
![RD Sharma solutions for Mathematics [English] Class 12 chapter 23 - Algebra of Vectors RD Sharma solutions for Mathematics [English] Class 12 chapter 23 - Algebra of Vectors - Shaalaa.com](/images/9788193663011-mathematics-english-class-12_6:be05c27f33094688837f0fdb2cb69ac3.jpg)
RD Sharma solutions for Mathematics [English] Class 12 chapter 23 - Algebra of Vectors
Shaalaa.com has the CBSE, Karnataka Board PUC Mathematics Mathematics [English] Class 12 CBSE, Karnataka Board PUC solutions in a manner that help students grasp basic concepts better and faster. The detailed, step-by-step solutions will help you understand the concepts better and clarify any confusion. RD Sharma solutions for Mathematics Mathematics [English] Class 12 CBSE, Karnataka Board PUC 23 (Algebra of Vectors) include all questions with answers and detailed explanations. This will clear students' doubts about questions and improve their application skills while preparing for board exams.
Further, we at Shaalaa.com provide such solutions so students can prepare for written exams. RD Sharma textbook solutions can be a core help for self-study and provide excellent self-help guidance for students.
Concepts covered in Mathematics [English] Class 12 chapter 23 Algebra of Vectors are Direction Cosines, Properties of Vector Addition, Geometrical Interpretation of Scalar, Scalar Triple Product of Vectors, Vector (Or Cross) Product of Two Vectors, Scalar (Or Dot) Product of Two Vectors, Position Vector of a Point Dividing a Line Segment in a Given Ratio, Addition of Vectors, Vectors and Their Types, Introduction of Vector, Magnitude and Direction of a Vector, Basic Concepts of Vector Algebra, Components of Vector, Section Formula, Vector Joining Two Points, Vectors Examples and Solutions, Projection of a Vector on a Line, Introduction of Product of Two Vectors, Multiplication of a Vector by a Scalar.
Using RD Sharma Mathematics [English] Class 12 solutions Algebra of Vectors exercise by students is an easy way to prepare for the exams, as they involve solutions arranged chapter-wise and also page-wise. The questions involved in RD Sharma Solutions are essential questions that can be asked in the final exam. Maximum CBSE, Karnataka Board PUC Mathematics [English] Class 12 students prefer RD Sharma Textbook Solutions to score more in exams.
Get the free view of Chapter 23, Algebra of Vectors Mathematics [English] Class 12 additional questions for Mathematics Mathematics [English] Class 12 CBSE, Karnataka Board PUC, and you can use Shaalaa.com to keep it handy for your exam preparation.