हिंदी

If → a , → B Are Two Vectors, Then Write the Truth Value of the Following Statement: | → a | = ∣ ∣ → B ∣ ∣ ⇒ → a = → B - Mathematics

Advertisements
Advertisements

प्रश्न

If \[\vec{a,} \vec{b}\] are two vectors, then write the truth value of the following statement: 
\[\left| \vec{a} \right| = \left| \vec{b} \right| \Rightarrow \vec{a} = \vec{b}\]

उत्तर

False.
We cannot say 
\[\left| \vec{a} \right| = \left| \vec{b} \right| \Rightarrow \vec{a} = \vec{b}\] 
Consider an example,
\[\vec{a} = i + \sqrt{3}j\text{ and }\vec{b} = \sqrt{2}i + \sqrt{2}j\]
\[\left| \vec{a} \right| = \sqrt{1^2 + \left( \sqrt{3} \right)^2} = 2 \text{ and }\left| \vec{b} \right| = \sqrt{\left( \sqrt{2} \right)^2 + \left( \sqrt{2} \right)^2} = 2\]
\[\text{ Thus, }\left| \vec{a} \right| = \left| \vec{b} \right|\text{ but }\vec{a} \neq \vec{b} \]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 23: Algebra of Vectors - Exercise 23.2 [पृष्ठ १७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 23 Algebra of Vectors
Exercise 23.2 | Q 5.3 | पृष्ठ १७

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the angle between the vectors `hati-hatj and hatj-hatk`


If `veca and vecb` are perpendicular vectors, `|veca+vecb| = 13 and |veca| = 5` ,find the value of `|vecb|.`


Show that the vectors `2hati - 3hatj + 4hatk` and `-4hati + 6hatj -  8hatk` are collinear.


Evaluate the product `(3veca - 5vecb).(2veca + 7vecb)`.


Find `|vecx|`, if for a unit vector veca , `(vecx -  veca).(vecx + veca) = 12`.


If  `veca.veca = 0` and `veca . vecb = 0,` then what can be concluded about the vector `vecb`?


If either vector `veca = vec0`  or `vecb = vec0`, then `veca.vecb = 0`. But the converse need not be true. Justify your answer with an example.


Show that the vectors `2hati - hatj + hatk, hati - 3hatj - 5hatk`  and `3hati - 4hatj - 4hatk` from the vertices of a right angled triangle.


Show that the points A, B, C with position vectors `2hati- hatj + hatk`, `hati - 3hatj - 5hatk` and `3hati - 4hatj - 4hatk` respectively, are the vertices of a right-angled triangle. Hence find the area of the triangle


If \[\vec{a,} \vec{b}\] are two vectors, then write the truth value of the following statement: 
 \[\vec{a} = - \vec{b} \Rightarrow \left| \vec{a} \right| = \left| \vec{b} \right|\]


If \[\vec{a,} \vec{b}\] are two vectors, then write the truth value of the following statement: 
\[|\vec{a}| =  |\vec{b}| \Rightarrow \vec{a}  = ± \vec{b} \]


The two vectors \[\hat{j} + \hat{k}\] and \[3 \hat{i} - \hat{j} + 4 \hat{k}\] represents the sides \[\overrightarrow{AB}\] and \[\overrightarrow{AC}\] respectively of a triangle ABC. Find the length of the median through A.


Define unit vector.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×