हिंदी

Find |x→|, if for a unit vector veca , (x→- a→).(x→+a→)=12. - Mathematics

Advertisements
Advertisements

प्रश्न

Find `|vecx|`, if for a unit vector veca , `(vecx -  veca).(vecx + veca) = 12`.

योग

उत्तर

We have, `(vecx - veca) xx (vecx + veca) = 12`

`vecx xx vecx + vecx xx veca - veca xx vecx - veca xx veca = 12`

`|vecx|^2 - |veca|^2 = 12`      ....`[∵ vecx xx veca = veca xx vecx]`

`|vecx|^2 - 1 = 12      ...[∵ |veca| = 1]`

`|vecx|^2 = 13`

`|vecx| = sqrt13`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 10: Vector Algebra - Exercise 10.3 [पृष्ठ ४४८]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
अध्याय 10 Vector Algebra
Exercise 10.3 | Q 9 | पृष्ठ ४४८

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the angle between the vectors `hati-hatj and hatj-hatk`


If `veca and vecb` are perpendicular vectors, `|veca+vecb| = 13 and |veca| = 5` ,find the value of `|vecb|.`


Show that the vectors `2hati - 3hatj + 4hatk` and `-4hati + 6hatj -  8hatk` are collinear.


Evaluate the product `(3veca - 5vecb).(2veca + 7vecb)`.


If  `veca.veca = 0` and `veca . vecb = 0,` then what can be concluded about the vector `vecb`?


If either vector `veca = vec0`  or `vecb = vec0`, then `veca.vecb = 0`. But the converse need not be true. Justify your answer with an example.


Show that the vectors `2hati - hatj + hatk, hati - 3hatj - 5hatk`  and `3hati - 4hatj - 4hatk` from the vertices of a right angled triangle.


Show that the points A, B, C with position vectors `2hati- hatj + hatk`, `hati - 3hatj - 5hatk` and `3hati - 4hatj - 4hatk` respectively, are the vertices of a right-angled triangle. Hence find the area of the triangle


If \[\vec{a,} \vec{b}\] are two vectors, then write the truth value of the following statement: 
 \[\vec{a} = - \vec{b} \Rightarrow \left| \vec{a} \right| = \left| \vec{b} \right|\]


If \[\vec{a,} \vec{b}\] are two vectors, then write the truth value of the following statement: 
\[|\vec{a}| =  |\vec{b}| \Rightarrow \vec{a}  = ± \vec{b} \]


If \[\vec{a,} \vec{b}\] are two vectors, then write the truth value of the following statement: 
\[\left| \vec{a} \right| = \left| \vec{b} \right| \Rightarrow \vec{a} = \vec{b}\]


The two vectors \[\hat{j} + \hat{k}\] and \[3 \hat{i} - \hat{j} + 4 \hat{k}\] represents the sides \[\overrightarrow{AB}\] and \[\overrightarrow{AC}\] respectively of a triangle ABC. Find the length of the median through A.


Define unit vector.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×