Advertisements
Online Mock Tests
Chapters
2: Functions
3: Binary Operations
4: Inverse Trigonometric Functions
5: Algebra of Matrices
6: Determinants
7: Adjoint and Inverse of a Matrix
8: Solution of Simultaneous Linear Equations
9: Continuity
10: Differentiability
11: Differentiation
12: Higher Order Derivatives
13: Derivative as a Rate Measurer
14: Differentials, Errors and Approximations
15: Mean Value Theorems
16: Tangents and Normals
17: Increasing and Decreasing Functions
18: Maxima and Minima
19: Indefinite Integrals
20: Definite Integrals
21: Areas of Bounded Regions
22: Differential Equations
23: Algebra of Vectors
24: Scalar Or Dot Product
25: Vector or Cross Product
▶ 26: Scalar Triple Product
27: Direction Cosines and Direction Ratios
28: Straight Line in Space
29: The Plane
30: Linear programming
31: Probability
32: Mean and Variance of a Random Variable
33: Binomial Distribution
![RD Sharma solutions for Mathematics [English] Class 12 chapter 26 - Scalar Triple Product RD Sharma solutions for Mathematics [English] Class 12 chapter 26 - Scalar Triple Product - Shaalaa.com](/images/9788193663011-mathematics-english-class-12_6:be05c27f33094688837f0fdb2cb69ac3.jpg)
Advertisements
Solutions for Chapter 26: Scalar Triple Product
Below listed, you can find solutions for Chapter 26 of CBSE, Karnataka Board PUC RD Sharma for Mathematics [English] Class 12.
RD Sharma solutions for Mathematics [English] Class 12 26 Scalar Triple Product Exercise 26.1 [Pages 16 - 17]
Evaluate the following:
\[\left[\hat{i}\hat{j}\hat{k} \right] + \left[ \hat{j}\hat{k}\hat {i} \right] + \left[ \hat{k}\hat{i} \hat{j} \right]\]
Evaluate the following:
\[\left[ 2 \hat{i}\hat{ j}\ \hat{k}\right] + \left[\hat{i}\hat{ k}\hat {j} \right] + \left[\hat{ k}\hat{ j} 2\hat{ i} \right]\]
Find \[\left[ \vec{a} \vec{b} \vec{c} \right]\] , when \[\vec{a} = 2 \hat{i} - 3 \hat{j} , \vec{b} = \hat{i} + \hat{j} - \hat{k} \text{ and } \vec{c} = 3 \hat{i} - \hat{k}\]
Find \[\left[ \vec{a} \vec{b} \vec{c} \right]\] , when \[\vec{a} =\hat{ i} - 2 \hat{j} + 3 \hat{k} , \vec{b} = 2 \hat{i} + \hat{j} - \hat{k}\text{ and } \vec{c} = \hat{j} + \hat{k}\]
Find the volume of the parallelopiped whose coterminous edges are represented by the vector:
\[\vec{a} = 2 \hat{i} + 3 \hat{j} + 4 \hat{k} , \vec{b} =\hat{ i} + 2 \hat{j} - \hat{k} , \vec{c} = 3 \hat{i} - \hat{j} + 2 \hat{k}\]
Find the volume of the parallelopiped whose coterminous edges are represented by the vector:
\[\vec{a} = 2 \hat{i} - 3 \hat{j} + 4 \hat{k} , \vec{b} = \hat{i} + 2 \hat{j} - \hat{k} , \vec{c} = 3 \hat{i} - \hat{j} - 2 \hat{k}\]
Find the volume of the parallelopiped whose coterminous edges are represented by the vector:
\[\vec{a} = 11 \hat{i} , \vec{b} = 2 \hat{j} , \vec{c} = 13 \hat{k}\]
Find the volume of the parallelopiped whose coterminous edges are represented by the vector:
\[\vec{a} = \hat{i} + \hat{j} + \hat{k} , \vec{b} =\hat{ i} - \hat{j} + \hat{k} , \vec{c} = \hat{i} + 2 \hat{j} - \hat{k}\]
Show of the following triad of vector is coplanar:
\[\vec{a} = \hat {i} + 2 \hat{j} - \hat {k} , \vec{b} = 3 \hat {i} + 2 \hat{j} + 7 \hat {k} , \vec{c} = 5 \hat {i} + 6 \hat { j} + 5 \hat {k}\]
Show of the following triad of vector is coplanar:
\[\vec{a} = - 4 \hat{i} - 6 \hat{j} - 2 \hat{k} , \vec{b} = -\hat{ i} + 4 \hat{j} + 3 \hat{k} , \vec{c} = - 8 \hat{i} - \hat{j} + 3 \hat{k}\]
Show of the following triad of vector is coplanar:
\[\hat{a} = \hat{i} - 2 \hat {j} + 3 \hat {k} , \hat {b} = - 2 \hat {i} + 3 \hat {j} - 4 \hat { k}, \hat {c} = \hat { i} - 3 \hat { j} + 5 \hat { k }\]
Find the value of λ so that the following vector is coplanar:
\[\vec{a} = \hat{i} - \hat{j} + \hat{k} , \vec{b} = 2 \hat {i} + \hat {j} - \hat {k} , \vec{c} = \lambda\hat { i} - \hat {j} + \lambda \hat {k}\]
Find the value of λ so that the following vector is coplanar:
\[\vec{a} = 2 \hat{i} - \hat {j} + \hat {k} , \vec{b} = \hat {i} + 2 \hat {j} - 3 \hat {k} , \vec{c} = \lambda \hat {i} + \lambda \hat {j} + 5 \hat {k}\]
Find the value of λ so that the following vector is coplanar:
\[\vec{a} = \hat{i} + 2\hat { j} - 3 \hat {k} , \vec{b} = 3 \hat{i} + \lambda \hat {j} + \hat {k} , \vec{c} = \hat {i} + 2 \hat {j} + 2 \hat {k}\]
Find the value of λ so that the following vector is coplanar:
\[\vec{a} = \hat {i} + 3 \hat {j} , \vec{b} = 5 \hat {k} , \vec{c} = \lambda \hat {i} - \hat {j}\]
Show that the four points having position vectors
\[6 \hat { i} - 7 \hat { j} , 16 \hat {i} - 19 \hat {j}- 4 \hat {k} , 3 \hat {j} - 6 \hat {k} , 2 \hat {i} + 5 \hat {j} + 10 \hat {k}\] are not coplanar.
Show that the points A (−1, 4, −3), B (3, 2, −5), C (−3, 8, −5) and D (−3, 2, 1) are coplanar.
Show that four points whose position vectors are
\[6 \hat { i} - 7 \hat {j} , 16 \hat { i} - 19 \hat { j} - 4 \hat {k} , 3 \hat {i} - 6 \hat {k} , 2 \hat { i} - 5 \hat {j}+ 10 \hat {k}\]
Find the value of λ for which the four points with position vectors
\[-\hat { j} - \hat {k} , 4 \hat {i} + 5 \hat {j} + \lambda \hat {k} , 3 \hat {i} + 9 \hat {j} + 4 \hat {k} \text { and } - 4 \hat {i} + 4 \hat {j} + 4 \hat{k}\]
Prove that: \[\left( \vec{a} - \vec{b} \right) \cdot \left\{ \left( \vec{b} - \vec{c} \right) \times \left( \vec{c} - \vec{a} \right) \right\} = 0\]
\[\text {Let } \vec{a} = \hat {i} + \hat {j} + \hat {k} , \vec{b} = \hat {i} \text{and} \hat {c} = c_1 \hat{i} + c_2 \hat {j} + c_3 \hat {k} . \text {Then},\]
If c1 = 1 and c2 = 2, find c3 which makes \[\vec{a,} \vec{b} \text { and } \vec{c}\] coplanar.
\[\text {Let } \vec{a} = \hat {i} + \hat {j} + \hat {k} , \vec{b} = \hat {i} \text{ and } \hat {c} = c_1 \hat{i} + c_2 \hat {j} + c_3 \hat {k} . \text {Then},\]
If c2 = −1 and c3 = 1, show that no value of c1 can make \[\vec{a,} \vec{b}\text { and } \vec{c}\] coplanar.
Find λ for which the points A (3, 2, 1), B (4, λ, 5), C (4, 2, −2) and D (6, 5, −1) are coplanar.
If four points A, B, C and D with position vectors 4 \[\hat { i} +3\] \[\hat { j} +3\] \[\hat { k} ,5\] \[\hat { i} +\] \[x\hat { j} +7\] \[\hat { k} ,5\] \[\hat { i} +3\] \[\hat { j}\] and \[7 \hat{i} + 6 \hat{j} + \hat{k}\] respectively are coplanar, then find the value of x.
RD Sharma solutions for Mathematics [English] Class 12 26 Scalar Triple Product Exercise 26.1 [Pages 17 - 18]
Write the value of \[\left[ 2 \hat { i } \ 3 \hat { j }\ 4 \hat { k } \right] .\]
Write the value of \[\left[ \hat {i} + \hat {j} \ \hat {j} + \hat {k} \ \hat {k} + \hat {i} \right] .\]
Write the value of \[\left[ \hat {i} - \hat {j} \hat {j} - \hat {k} \hat {k} - \hat {i} \right] .\]
Find the values of 'a' for which the vectors
\[\vec{\alpha} = \hat {i} + 2 \hat {j} + \hat {k} , \vec{\beta} = a \hat {i} + \hat {j} + 2 \hat {k} \text { and } \vec{\gamma} = \hat {i} + 2 \hat {j} + a \hat { k }\] are coplanar.
Find the volume of the parallelopiped with its edges represented by the vectors \[\hat {i} + \hat {j} , \hat {i} + 2 \hat {j} \text { and } \hat {i} + \hat {j} + \pi k .\]
If \[\vec{a,} \vec{b}\] \[\text { are non-collinear vectors, then find the value of} \left[ \vec{a} \vec{b}\hat { i} \right] \hat{i} + \left[ \vec{a} \vec{b} \hat {j} \right] \hat {j} + \left[ \vec{a} \vec{b} \hat {k} \right] \hat {k} .\]
If the vectors (sec2 A) \[\hat {i} + \hat {j} + \hat {k} , \hat {i} + \left( \sec^2 B \right) \hat {j} + \hat {k} , \hat {i} + \hat {j} + \left( \sec^2 C \right) \hat {k}\] are coplanar, then find the value of cosec2 A + cosec2 B + cosec2 C.
For any two vectors \[\vec{a} \text { and } \vec{b}\] of magnitudes 3 and 4 respectively, write the value of \[\left[ \vec{a} \vec{b} \vec{a} \times \vec{b} \right] + \left( \vec{a} \cdot \vec{b} \right)^2 .\]
If \[\left[ 3 \vec{a} + 7 \vec{b} \vec{c} \vec{d} \right] = \lambda\left[ \vec{a} \vec{c} \vec{d} \right] + \mu\left[ \vec{b} \vec{c} \vec{d} \right],\] then find the value of λ + μ.
If \[\vec{a,} \vec{b,} \vec{c}\] are non-coplanar vectors, then find the value of \[\frac{\vec{a} \cdot \left( \vec{b} \times \vec{c} \right)}{\left( \vec{c} \times \vec{a} \right) \cdot \vec{b}} + \frac{\vec{b} \cdot \left( \vec{a} \times \vec{c} \right)}{\vec{c} \cdot \left( \vec{a} \times \vec{b} \right)}\].
Find \[\vec{a} . \left( \vec{b} \times \vec{c} \right)\], if \[\vec{a} = 2 \hat {i} + \hat {j} + 3 \hat {k} , \vec{b} = - \hat {i} + 2 \hat {j} + \hat {k}\] and \[\vec{c} = 3 \hat { i} + \hat {j} + 2 \hat {k}\].
RD Sharma solutions for Mathematics [English] Class 12 26 Scalar Triple Product MCQ [Pages 18 - 20]
If \[\vec{a}\] lies in the plane of vectors \[\vec{b} \text { and } \vec{c}\], then which of the following is correct?
\[\left[ \vec{a} \vec{b} \vec{c} \right] = 0\]
\[\left[ \vec{a} \vec{b} \vec{c} \right] = 1\]
\[\left[ \vec{a} \vec{b} \vec{c} \right] = 3\]
\[\left[ \vec{b} \vec{c} \vec{a} \right] = 1\]
The value of \[\left[ \vec{a} - \vec{b} , \vec{b} - \vec{c} , \vec{c} - \vec{a} \right], \text { where } \left| \vec{a} \right| = 1, \left| \vec{b} \right| = 5, \left| \vec{c} \right| = 3, \text { is }\]
0
1
6
none of these
If \[\vec{a,} \vec{b,} \vec{c}\] are three non-coplanar mutually perpendicular unit vectors, then \[\left[ \vec{a} \vec{b} \vec{c} \right],\] is
± 1
0
-2
2
If \[\vec{r} \cdot \vec{a} = \vec{r} \cdot \vec{b} = \vec{r} \cdot \vec{c} = 0\] for some non-zero vector \[\vec{r} ,\] then the value of \[\left[ \vec{a} \vec{b} \vec{c} \right],\] is
2
3
0
none of these
For any three vectors \[\vec{a,} \vec{b,} \vec{c}\] the expression \[\left( \vec{a} - \vec{b} \right) . \left\{ \left( \vec{b} - \vec{c} \right) \times \left( \vec{c} - \vec{a} \right) \right\}\] equals
\[\left[ \vec{a} \vec{b} \vec{c} \right]\]
\[2\left[ \vec{a} \vec{b} \vec{c} \right]\]
\[\left[ \vec{a} \vec{b} \vec{c} \right]^2\]
none of these
If \[\vec{a,} \vec{b,} \vec{c}\] are non-coplanar vectors, then \[\frac{\vec{a} \cdot \left( \vec{b} \times \vec{c} \right)}{\left( \vec{c} \times \vec{a} \right) \cdot \vec{b}} + \frac{\vec{b} \cdot \left( \vec{a} \times \vec{c} \right)}{\vec{c} \cdot \left( \vec{a} \times \vec{b} \right)}\] is equal to
0
2
1
none of these
Let \[\vec{a} = a_1 \hat { i }+ a_2 \hat {j} + a_3 \hat {k} , \vec{b} = b_1 \hat {i} + b_2 \hat { j } + b_3 \hat { k} \text { and } \vec{c} = c_1 \hat { i } + c_2 \hat{j } + c_3\text { k }\] be three non-zero vectors such that \[\vec{c}\] is a unit vector perpendicular to both \[\vec{a} \text { and } \vec{b}\]. If the angle between \[\vec{a} \text { and } \vec{b}\] is \[\frac{\pi}{6},\] , then
\[\begin{vmatrix}a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3\end{vmatrix}^2\] is equal to
0
1
\[\frac{1}{4} \left| \vec{a} \right|^2 \left| \vec{b} \right|^2\]
\[\frac{3}{4} \left| \vec{a} \right|^2 \left| \vec{b} \right|^2\]
If \[\vec{a} = 2\hat{ i} - 3 \hat { j} + 5 \hat { k} , \vec{b} = 3 \hat {i} - 4 \hat {j} + 5 \hat {k} \text { and } \vec{c} = 5\hat { i } - 3 \hat {j}- 2 \hat{k},\] then the volume of the parallelopiped with conterminous edges \[\vec{a} + \vec{b,} \vec{b} + \vec{c,} \vec{c} + \vec{a}\] is
2
1
-1
0
None of these
If \[\left[ 2 \vec{a} + 4 \vec{b} \vec{c} \vec{d} \right] = \lambda\left[ \vec{a} \vec{c} \vec{d} \right] + \mu\left[ \vec{b} \vec{c} \vec{d} \right],\] then λ + μ =
6
-6
10
8
\[\left[ \vec{a} \vec{b} \vec{a} \times \vec{b} \right] + \left( \vec{a} . \vec{b} \right)^2 =\]
\[\left| \vec{a} \right|^2 \left| \vec{b} \right|^2\]
\[\left| \vec{a} + \vec{b} \right|^2\]
\[\left| \vec{a} \right|^2 + \left| \vec{b} \right|^2\]
\[2 \left| \vec{a} \right|^2 \left| \vec{b} \right|^2\]
If the vectors \[4 \hat { i} + 11 \hat {j} + m \hat {k} , 7 \hat { i} + 2 \hat { j} + 6 \hat {k} \text { and } \hat {i} + 5 \hat {j} + 4 \hat {k}\] are coplanar, then m =
0
38
-10
10
For non-zero vectors \[\vec{a,} \vec{b} \text { and }\vec{c}\] the relation \[\left| \left( \vec{a} \times \vec{b} \right) \cdot \vec{c} \right| = \left| \vec{a} \right| \left| \vec{b} \right| \left| \vec{c} \right|\] holds good, if
\[\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{c} = 0\]
\[\vec{a} \cdot \vec{b} = 0 = \vec{c} \cdot \vec{a}\]
\[\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{c} = \vec{c} \cdot \vec{a} = 0\]
\[\vec{b} \cdot \vec{c} = \vec{c} \cdot \vec{a} = 0\]
\[\left( \vec{a} + \vec{b} \right) \cdot \left( \vec{b} + \vec{c} \right) \times \left( \vec{a} + \vec{b} + \vec{c} \right) =\]
0
\[\left[ \vec{a} \vec{b} \vec{c} \right]\]
\[2\left[ \vec{a} \vec{b} \vec{c} \right]\]
\[\left[ \vec{a} \vec{b} \vec{c} \right]\]
If \[\vec{a,} \vec{b,} \vec{c}\] are three non-coplanar vectors, then \[\left( \vec{a} + \vec{b} + \vec{c} \right) . \left[ \left( \vec{a} + \vec{b} \right) \times \left( \vec{a} + \vec{c} \right) \right]\] equals
0
\[\left[ \vec{a} \vec{b} \vec{c} \right]\]
\[2\left[ \vec{a} \vec{b} \vec{c} \right]\]
\[- \left[ \vec{a} \vec{b} \vec{c} \right]\]
\[\left( \vec{a} + 2 \vec{b} - \vec{c} \right) \cdot \left\{ \left( \vec{a} - \vec{b} \right) \times \left( \vec{a} - \vec{b} - \vec{c} \right) \right\}\] is equal to
\[\left[ \vec{a} \vec{b} \vec{c} \right]\]
\[2\left[ \vec{a} \vec{b} \vec{c} \right]\]
\[3\left[ \vec{a} \vec{b} \vec{c} \right]\]
0
Solutions for 26: Scalar Triple Product
![RD Sharma solutions for Mathematics [English] Class 12 chapter 26 - Scalar Triple Product RD Sharma solutions for Mathematics [English] Class 12 chapter 26 - Scalar Triple Product - Shaalaa.com](/images/9788193663011-mathematics-english-class-12_6:be05c27f33094688837f0fdb2cb69ac3.jpg)
RD Sharma solutions for Mathematics [English] Class 12 chapter 26 - Scalar Triple Product
Shaalaa.com has the CBSE, Karnataka Board PUC Mathematics Mathematics [English] Class 12 CBSE, Karnataka Board PUC solutions in a manner that help students grasp basic concepts better and faster. The detailed, step-by-step solutions will help you understand the concepts better and clarify any confusion. RD Sharma solutions for Mathematics Mathematics [English] Class 12 CBSE, Karnataka Board PUC 26 (Scalar Triple Product) include all questions with answers and detailed explanations. This will clear students' doubts about questions and improve their application skills while preparing for board exams.
Further, we at Shaalaa.com provide such solutions so students can prepare for written exams. RD Sharma textbook solutions can be a core help for self-study and provide excellent self-help guidance for students.
Concepts covered in Mathematics [English] Class 12 chapter 26 Scalar Triple Product are Direction Cosines, Properties of Vector Addition, Geometrical Interpretation of Scalar, Scalar Triple Product of Vectors, Vector (Or Cross) Product of Two Vectors, Scalar (Or Dot) Product of Two Vectors, Position Vector of a Point Dividing a Line Segment in a Given Ratio, Addition of Vectors, Vectors and Their Types, Introduction of Vector, Magnitude and Direction of a Vector, Basic Concepts of Vector Algebra, Components of Vector, Section Formula, Vector Joining Two Points, Vectors Examples and Solutions, Projection of a Vector on a Line, Introduction of Product of Two Vectors, Multiplication of a Vector by a Scalar.
Using RD Sharma Mathematics [English] Class 12 solutions Scalar Triple Product exercise by students is an easy way to prepare for the exams, as they involve solutions arranged chapter-wise and also page-wise. The questions involved in RD Sharma Solutions are essential questions that can be asked in the final exam. Maximum CBSE, Karnataka Board PUC Mathematics [English] Class 12 students prefer RD Sharma Textbook Solutions to score more in exams.
Get the free view of Chapter 26, Scalar Triple Product Mathematics [English] Class 12 additional questions for Mathematics Mathematics [English] Class 12 CBSE, Karnataka Board PUC, and you can use Shaalaa.com to keep it handy for your exam preparation.