हिंदी

Find [ → a → B → C ] , When → a = 2 ^ I − 3 ^ J , → B = ^ I + ^ J − ^ K and → C = 3 ^ I − ^ K - Mathematics

Advertisements
Advertisements

प्रश्न

Find [abc] , when a=2i^3j^,b=i^+j^k^ and c=3i^k^

योग

उत्तर

Given :

a=2i^3j^

b=i^+j^k^

c=3i^k^

a×b=(2i^3j^)×(i^+j^k^)

=2k^+2j^+3k^+3i^

=3i^+2j^+5k^

(a×b).c=(3i^+2j^+5k^).(3i^k^)

=95=4...(1)

Now, 

[abc]=(a×b).c

=4[Using(1)]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 26: Scalar Triple Product - Exercise 26.1 [पृष्ठ १६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 26 Scalar Triple Product
Exercise 26.1 | Q 2.1 | पृष्ठ १६

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

If A, B, C, D are (1, 1, 1), (2, 1, 3), (3, 2, 2), (3, 3, 4) respectively, then find the volume of parallelopiped with AB, AC and AD as the concurrent edges.


Show that the four points A(4, 5, 1), B(0, –1, –1), C(3, 9, 4) and D(–4, 4, 4) are coplanar.


If a¯=3i^-j^+4k^,b¯=2i^+3j^-k^,c¯=-5i^+2j^+3k^ then a¯.(b¯×c¯)=

(A) 100

(B) 101

(C) 110

(D) 109


Find the value of λ, if four points with position vectors 3i^+6j^+9k^, i^ +2j^+3k^,2i^+3j^+k^ and 4i^+6j^+λk^ are coplanar.


if a¯=3i^-2j^+7k^, b¯ =5i^+j^-2k^and c¯=i^+j^-k^ then find a¯.(b¯×c¯)


Show that the four points A, B, C and D with position vectors 4i^+5j^+k^, -j^-k^, 3i^+9j^+4k^ and 4(-i^+j^+k^) respectively are coplanar


Find the volume of a parallelopiped whose edges are represented by the vectors:

a =2i^-3j^-4k^, b =i^+2j^-k^ and c=3i^+ j^+ 2k^


Give a condition that three vectors a, b and c  form the three sides of a triangle. What are the other possibilities?


Prove that a necessary and sufficient condition for three vectors a, b, c  to be coplanar is that there exist scalars l, m, n not all zero simultaneously such that la+mb+nc=0.


Find [abc] , when a=i^2j^+3k^,b=2i^+j^k^ and c=j^+k^


Find the volume of the parallelopiped whose coterminous edges are represented by the vector:

a=11i^,b=2j^,c=13k^


Show that the points A (−1, 4, −3), B (3, 2, −5), C (−3, 8, −5) and D (−3, 2, 1) are coplanar.


Prove that: (ab){(bc)×(ca)}=0


Write the value of [i^+j^ j^+k^ k^+i^].


For any two vectors a and b of magnitudes 3 and 4 respectively, write the value of [aba×b]+(ab)2.


If a,b,c are non-coplanar vectors, then find the value of a(b×c)(c×a)b+b(a×c)c(a×b).


Find a.(b×c),  if a=2i^+j^+3k^,b=i^+2j^+k^ and  c=3i^+j^+2k^.


For any three vectors a,b,c  the expression (ab).{(bc)×(ca)}  equals


Find the volume of the parallelopiped, if the coterminus edges are given by the vectors 2i^+5j^-4k^,5i^+7j^+5k^,4i^+5j^-2k^.                               


Find the volume of the parallelepiped whose coterminous edges are represented by the vectors -6i^+14j^+10k^,14i^-10j^-6k^ and 2i^+4j^-2k^


Determine whether the three vectors 2i^+3j^+k^,i^-2j^+2k^ and 3i^+j^+3k^ are coplanar


If the volume of tetrahedron whose vertices are A(0, 1, 2), B(2, -3, 0), C(1, 0, 2) and D(-2,-3,lambda) is 73 cu.units, then the value of λ is ______.


Let a¯,b¯,c¯ be three vectors such that a¯0, and a¯×b¯=2a¯×c¯,|a¯|=|c¯|=1,|b¯|=4 and |b¯×c¯|=15. If b¯-2c¯=λa¯, then λ is equal to ______.


Prove that the volume of a tetrahedron with coterminus edges a¯,b¯ and c¯ is 16[a¯b¯c¯].

Hence, find the volume of tetrahedron whose coterminus edges are a¯=i^+2j^+3k^,b¯=-i^+j^+2k^ and c¯=2i^+j^+4k^.


Determine whether a¯andb¯ are orthogonal, parallel or neither.

a¯=-35i^+12j^+13k^,b¯=5i^+4j^+3k^


Determine whether a¯andb¯ are orthogonal, parallel or neither.

a¯=-35i^+12j^+13k^,b¯=5i^+4j^+3k^


Find the volume of the parallelopiped whose coterminous edges are 2i^-3j^,i^+j^-k^ and 3i^-k^.


If u¯=i^-2j^+k^,v¯=3i^+k^ and w¯=j^-k^ are given vectors, then find [u¯×v¯   u¯×w¯   v¯×w¯]


If the points A(1, 2, 3), B(–1, 1, 2), C(2, 3, 4) and D(–1, x, 0) are coplanar find the value of x.


Determine whether a¯andb¯ are orthogonal, parallel or neither.

a¯=-35i^+12j^+13k^,b¯=5i^+4j^+3k^


If u=i^-2j^+k^,r¯=3i^+k^andw=j^,k^  are given vectors, then find [u¯+w¯].[(w¯×r¯)×(r¯×w¯)]


Determine whether a¯andb¯ are orthogonal, parallel or neither.

a¯=-35i^+12j^+13k^, b¯=5i^+4j^+3k^


Find the volume of a tetrahedron whose vertices are A(−1, 2, 3) B(3, −2, 1), C(2, 1, 3) and D(−1, −2, 4). 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.