हिंदी

Show that the Points a (−1, 4, −3), B (3, 2, −5), C (−3, 8, −5) and D (−3, 2, 1) Are Coplanar. - Mathematics

Advertisements
Advertisements

प्रश्न

Show that the points A (−1, 4, −3), B (3, 2, −5), C (−3, 8, −5) and D (−3, 2, 1) are coplanar.

योग

उत्तर

\[\text { The points A, B, C and D will be coplanar iff any one of the following triads of vectors are coplanar:} \]

\[ \overrightarrow{AB} , \overrightarrow{AC} , \overrightarrow{AD} ; \overrightarrow{AB} , \overrightarrow{BC} , \overrightarrow{CD} ; \overrightarrow{BC} , \overrightarrow{BA} , \overrightarrow{BD,} \text { etc } . \]

\[\text { To show that }\overrightarrow{AB} , \overrightarrow{AC} , \overrightarrow{AD} \text { are coplanar, we have to prove that their scaler triple product,} \]

\[\text {i . e } . \left[ \overrightarrow{AB} \overrightarrow{AC} \overrightarrow{AD} \right] = 0\]

Now,

\[ \overrightarrow{AB} = \left[ 3 - \left( - 1 \right) \right] \hat {i} + \left( 2 - 4 \right) \hat { j } + \left[ - 5 - \left( - 3 \right) \right] \hat{k} = 4 \hat { i} - 2 \hat {j} - 2 \hat {k} \]

\[ \overrightarrow{AC} = \left[ - 3 - \left( - 1 \right) \right] \hat { i} + \left( 8 - 4 \right) \hat {j} + \left[ - 5 - \left( - 3 \right) \right] \hat{k} = - 2 \hat {i} + 4 \hat {j} - 2 \hat {k} \]

\[ \overrightarrow{AD} = \left[ - 3 - \left( - 1 \right) \right] \hat { i} + \left( 2 - 4 \right) \hat {j} + \left[ 1 - \left( - 3 \right) \right] \hat {k} = - 2\hat { i} - 2 \hat {j} + 4 \hat{k} \]

\[ \therefore \left[ \overrightarrow{AB} \overrightarrow{AC} \overrightarrow{AD} \right] = \begin{vmatrix}4 & - 2 & - 2 \\ - 2 & 4 & - 2 \\ - 2 & - 2 & 4\end{vmatrix} = 4\left( 16 - 4 \right) + 2\left( - 8 - 4 \right) - 2\left( 4 + 8 \right) = 0\]

Thus, the given points are coplanar .

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 26: Scalar Triple Product - Exercise 26.1 [पृष्ठ १७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 26 Scalar Triple Product
Exercise 26.1 | Q 7 | पृष्ठ १७

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Let `veca = hati + hatj + hatk = hati` and `vecc = c_1veci + c_2hatj + c_3hatk` then

1) Let `c_1 = 1` and `c_2 = 2`, find `c_3` which makes `veca, vecb "and" vecc`coplanar

2) if `c_2 = -1` and `c_3 = 1`, show that no value of `c_1`can make `veca, vecb and vecc` coplanar


Show that the four points A, B, C and D with position vectors `4hati + 5hatj + hatk`, `-hatj-hatk`, `3hati + 9hatj + 4hatk` and `4(-hati + hatj + hatk)` respectively are coplanar


Prove that a necessary and sufficient condition for three vectors \[\vec{a}\], \[\vec{b}\], \[\vec{c}\]  to be coplanar is that there exist scalars l, m, n not all zero simultaneously such that \[l \vec{a} + m \vec{b} + n \vec{c} = \vec{0} .\]


Find the volume of the parallelopiped whose coterminus edges are given by vectors `2hati+5hatj-4hatk, 5hati+7hatj+5hatk and 4hati+5hatj-2hatk`


Find the volume of the parallelopiped whose coterminous edges are represented by the vector:

\[\vec{a} = 2 \hat{i} + 3 \hat{j} + 4 \hat{k} , \vec{b} =\hat{ i} + 2 \hat{j} - \hat{k} , \vec{c} = 3 \hat{i} - \hat{j} + 2 \hat{k}\]


Find the volume of the parallelopiped whose coterminous edges are represented by the vector:

\[\vec{a} = 2 \hat{i} - 3 \hat{j} + 4 \hat{k} , \vec{b} = \hat{i} + 2 \hat{j} - \hat{k} , \vec{c} = 3 \hat{i} - \hat{j} - 2 \hat{k}\]


Find the volume of the parallelopiped whose coterminous edges are represented by the vector:

\[\vec{a} = \hat{i} + \hat{j} + \hat{k} , \vec{b} =\hat{ i} - \hat{j} + \hat{k} , \vec{c} = \hat{i} + 2 \hat{j} - \hat{k}\]


Show of the following triad of vector is coplanar:

\[\hat{a} = \hat{i} - 2 \hat {j} + 3 \hat {k} , \hat {b} = - 2 \hat {i} + 3 \hat {j} - 4 \hat { k}, \hat {c} = \hat { i} - 3 \hat { j} + 5 \hat { k }\]


Find the value of λ so that the following vector is coplanar:

\[\vec{a} = \hat{i} - \hat{j} + \hat{k} , \vec{b} = 2 \hat {i} + \hat {j} - \hat {k} , \vec{c} = \lambda\hat { i} - \hat {j} + \lambda \hat {k}\]


Prove that: \[\left( \vec{a} - \vec{b} \right) \cdot \left\{ \left( \vec{b} - \vec{c} \right) \times \left( \vec{c} - \vec{a} \right) \right\} = 0\]


Find λ for which the points A (3, 2, 1), B (4, λ, 5), C (4, 2, −2) and D (6, 5, −1) are coplanar.


Write the value of \[\left[ 2 \hat { i } \ 3 \hat { j }\ 4 \hat { k } \right] .\]


If \[\vec{a,} \vec{b,} \vec{c}\] are non-coplanar vectors, then find the value of \[\frac{\vec{a} \cdot \left( \vec{b} \times \vec{c} \right)}{\left( \vec{c} \times \vec{a} \right) \cdot \vec{b}} + \frac{\vec{b} \cdot \left( \vec{a} \times \vec{c} \right)}{\vec{c} \cdot \left( \vec{a} \times \vec{b} \right)}\].


If \[\vec{a}\] lies in the plane of vectors \[\vec{b} \text { and } \vec{c}\], then which of the following is correct?


If \[\vec{a,} \vec{b,} \vec{c}\] are non-coplanar vectors, then \[\frac{\vec{a} \cdot \left( \vec{b} \times \vec{c} \right)}{\left( \vec{c} \times \vec{a} \right) \cdot \vec{b}} + \frac{\vec{b} \cdot \left( \vec{a} \times \vec{c} \right)}{\vec{c} \cdot \left( \vec{a} \times \vec{b} \right)}\] is equal to


\[\left( \vec{a} + \vec{b} \right) \cdot \left( \vec{b} + \vec{c} \right) \times \left( \vec{a} + \vec{b} + \vec{c} \right) =\]


Determine where `bar"a"` and `bar"b"` are orthogonal, parallel or neithe:

`bar"a" = - 9hat"i" + 6hat"j" + 15hat"k"` , `bar"b" = 6hat"i" - 4hat"j" - 10hat"k"`.


Determine where `bar"a"` and `bar"b"` are orthogonal, parallel or neithe:

`bar"a" = 4hat"i" - hat"j" + 6hat"k"` , `bar"b" = 5hat"i" - 2hat"j" + 4hat"k"`


Prove by vector method, that the angle subtended on semicircle is a right angle.


If a line has the direction ratios 4, −12, 18, then find its direction cosines


Find the angle between the lines whose direction cosines l, m, n satisfy the equations 5l + m + 3n = 0 and 5mn − 2nl + 6lm = 0.


If the vectors `3hat"i" + 5hat"k", 4hat"i" + 2hat"j" - 3hat"k"` and `3hat"i" + hat"j" + 4hat"k"`  are the coterminus edges of the parallelopiped, then find the volume of the parallelopiped.


If `bar"u" = hat"i" - 2hat"j" + hat"k" , bar"v" = 3hat"i" + hat"k"` and `bar"w" = hat"j" - hat"k"` are given vectors, then find `(bar"u" + bar"w").[(bar"u" xx bar"v") xx (bar"v" xx bar"w")]`


Find the altitude of a parallelepiped determined by the vectors `vec"a" = - 2hat"i" + 5hat"j" + 3hat"k", vec"b" = hat"i" + 3hat"j" - 2hat"k"` and `vec"c" = - vec"i" + vec"j" + 4vec"k"` if the base is taken as the parallelogram determined by `vec"b"` and `vec"c"`


Determine whether the three vectors `2hat"i" + 3hat"j" + hat"k", hat"i" - 2hat"j" + 2hat"k"` and `3hat"i" + hat"j" + 3hat"k"` are coplanar


Let `vec"a",  vec"b",  vec"c"` be three non-zero vectors such that `vec"c"` is a unit vector perpendicular to both `vec"a"` and `vec"b"`. If the angle between `vec"a"` and `vec"b"` is `pi/6`, show that `[(vec"a", vec"b", vec"c")]^2 = 1/4|vec"a"|^2|vec"b"|^2`


If the volume of the tetrahedron formed by the coterminous edges `bar"a", bar"b" and bar"c"` is 5, then the volume of the parallelopiped formed by the coterminous edges `bar"a" xx bar"b", bar"b" xx bar"c" and bar"c" xx bar"a"` is


If the points having the position vectors `2hat"i" + hat"j" - hat"k", -hat"j", 4hat"i" + 4hat"k"` and `lambdahat"i" + hat"k"` lie on the same plane, then λ is equal to ______.


Let v = `2hati + hatj - hatk` and w = `hati + 3hatk`. If u is a unit vector, then maximum value of scalar triple product [u v w] is ______.


Prove that the volume of a tetrahedron with coterminus edges `overlinea, overlineb` and `overlinec` is `1/6[(overlinea, overlineb, overlinec)]`.

Hence, find the volume of tetrahedron whose coterminus edges are `overlinea = hati + 2hatj + 3hatk, overlineb = -hati + hatj + 2hatk` and `overlinec = 2hati + hatj + 4hatk`.


Determine whether `bara` and `barb` are orthogonal, parallel or neither.

`bara = - 3/5 hati + 1/2 hatj + 1/3 hatk, barb = 5hati + 4hatj + 3hatk`


If `2hati + 3hatj, hati + hatj + hatk` and `λhati + 4hatj + 2hatk` taken in order are coterminous edges of a parallelopiped of volume 2 cu. units, then find the value of λ.


If `bar"u" = hat"i" - 2hat"j" + hat"k" , bar"v" = 3hat"i" + hat"k"` and `bar"w" = hat"j" - hat"k"` are given vectors, then find `[bar"u" xx bar"v"     bar"u" xx bar"w"     bar"v" xx bar"w"]`


Determine whether `bara and barb` are orthogonal, parallel or neither.

`bara = -3/5hati + 1/2hatj +1/3 hatk, barb = 5hati + 4hatj +3hatk`


If a vector has direction angles 45ºand 60º find the third direction angle. 


Find the volume of a tetrahedron whose vertices are A(−1, 2, 3) B(3, −2, 1), C (2, 1, 3) and D(−1, −2, 4).


Determine whether `bara and barb` are orthogonal, parallel or neither.

`bara = -3/5 hati + 1/2 hatj + 1/3 hatk,  barb = 5 hati + 4 hatj + 3 hatk`


If `baru = hati - 2hatj + hatk,  barv = 3hati + hatk   "and"  barw = hatj - hatk` are given vectors, then find `[baru + barw]·[(baru xx barv)xx(barv xx barw)]`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×