Advertisements
Advertisements
प्रश्न
Let `vec"a", vec"b", vec"c"` be three non-zero vectors such that `vec"c"` is a unit vector perpendicular to both `vec"a"` and `vec"b"`. If the angle between `vec"a"` and `vec"b"` is `pi/6`, show that `[(vec"a", vec"b", vec"c")]^2 = 1/4|vec"a"|^2|vec"b"|^2`
उत्तर
Given `vec"c"` is perpendicular to both `vec"a"` and `vec"b"`
So `vec"c"` is parallel to `vec"a" xx vec"b"`
`[(vec"a", vec"b", vec"c")] = vec"a"*(vec"b" xx vec"c")`
`|[(vec"a", vec"b", vec"c")]| = |vec"a"||vec"b" xx vec"c"|`
= `|vec"a"|vec"b"|vec"c"| sin(pi/6)`
`|[(vec"a", vec"b", vec"c")]| = |vec"a"||vec"b"||vec"c"|(1/2)`
Squaring on both sides `[(vec"a", vec"b", vec"c")]^2 = |vec"a"||vec"b"||vec"c"|^2 1/4` ..........`("since" |vec"c"| = 1)`
`[(vec"a", vec"b", vec"c")]^2 = 1/4|vec"a"|^2|vec"b"|^2`
APPEARS IN
संबंधित प्रश्न
Show that the four points A, B, C and D with position vectors `4hati + 5hatj + hatk`, `-hatj-hatk`, `3hati + 9hatj + 4hatk` and `4(-hati + hatj + hatk)` respectively are coplanar
Find the volume of the parallelopiped whose coterminous edges are represented by the vector:
\[\vec{a} = \hat{i} + \hat{j} + \hat{k} , \vec{b} =\hat{ i} - \hat{j} + \hat{k} , \vec{c} = \hat{i} + 2 \hat{j} - \hat{k}\]
Show of the following triad of vector is coplanar:
\[\hat{a} = \hat{i} - 2 \hat {j} + 3 \hat {k} , \hat {b} = - 2 \hat {i} + 3 \hat {j} - 4 \hat { k}, \hat {c} = \hat { i} - 3 \hat { j} + 5 \hat { k }\]
Find the value of λ so that the following vector is coplanar:
\[\vec{a} = \hat{i} - \hat{j} + \hat{k} , \vec{b} = 2 \hat {i} + \hat {j} - \hat {k} , \vec{c} = \lambda\hat { i} - \hat {j} + \lambda \hat {k}\]
Find λ for which the points A (3, 2, 1), B (4, λ, 5), C (4, 2, −2) and D (6, 5, −1) are coplanar.
If \[\left[ 3 \vec{a} + 7 \vec{b} \vec{c} \vec{d} \right] = \lambda\left[ \vec{a} \vec{c} \vec{d} \right] + \mu\left[ \vec{b} \vec{c} \vec{d} \right],\] then find the value of λ + μ.
If \[\vec{a}\] lies in the plane of vectors \[\vec{b} \text { and } \vec{c}\], then which of the following is correct?
Show that the vectors `hat (i) - 2 hat(j) + 3 hat (k), - 2 hat(i) + 3 hat(j) - 4 hat(k) " and " hat(i) - 3 hat(j) + 5 hat(k) ` are coplanar.
Determine where `bb(bara)` and `bb(barb)` are orthogonal, parallel or neither.
`bara = -3/5hati + 1/2hatj + 1/3hatk , barb = 5hati + 4hatj + 3hatk`
Prove by vector method, that the angle subtended on semicircle is a right angle.
If a vector has direction angles 45° and 60°, find the third direction angle.
If `vec"a" = hat"i" - 2hat"j" + 3hat"k", vec"b" = 2hat"i" + hat"j" - 2hat"k", vec"c" = 3hat"i" + 2hat"j" + hat"k"`, find `vec"a" * (vec"b" xx vec"c")`
Determine whether the three vectors `2hat"i" + 3hat"j" + hat"k", hat"i" - 2hat"j" + 2hat"k"` and `3hat"i" + hat"j" + 3hat"k"` are coplanar
If the points having the position vectors `2hat"i" + hat"j" - hat"k", -hat"j", 4hat"i" + 4hat"k"` and `lambdahat"i" + hat"k"` lie on the same plane, then λ is equal to ______.
If `veca = hati + hatj + hatk, veca.vecb` = 1 and `veca xx vecb = hatj - hatk`, then find `|vecb|`.
Determine whether `bara and barb` are orthogonal, parallel or neither.
`bara = - 3/5 hati+ 1/2 hatj + 1/3 hatk , barb= 5hati + 4hatj + 3hatk`
Determine whether `bb(bara and barb)` are orthogonal, parallel or neither.
`bar a = -3/5hati + 1/2hatj + 1/3hatk, barb = 5hati + 4hatj + 3hatk`
If a vector has direction angles 45ºand 60º find the third direction angle.
If `u=hati -2hatj + hatk, barr=3hati + hatk and w=hatj, hatk` are given vectors, then find `[baru + barw]. [(barw xx barr)xx(barr xx barw)]`
Determine whether `\bb(bara and barb)` are orthogonal, parallel or neither.
`bara = -3/5 hati + 1/2 hatj + 1/3 hatk, barb = 5hati + 4hatj + 3hatk `