हिंदी

If a→=i^+j^+k^,a→.b→ = 1 and a→×b→=j^-k^, then find |b→|. - Mathematics

Advertisements
Advertisements

प्रश्न

If `veca = hati + hatj + hatk, veca.vecb` = 1 and `veca xx vecb = hatj - hatk`, then find `|vecb|`.

योग

उत्तर

Given, `veca = hati + hatj + hatk`

`veca.vecb` = 1

And `veca xx vecb = hatj - hatk`

Let `vecb = ahati + bhatj + chatk`

Now, `veca.vecb` = 1

⇒ `(hati + hatj + hatk)(b_1hati + b_2hatj + b_3hatk)` = 1

⇒ `b_1 + b_2 + b_3` = 1  ...(i)

And `veca xx vecb = hatj - hatk`

⇒ `|(hati, hatj, hatk),(1, 1, 1),(b_1, b_2, b_3)| = hatj - hatk`

⇒ `hati(b_3 - b_2) - hatj(b_3 - b_1) + hatk(b_2 - b_1) = hatj - hatk`

On comparing both sides, we get

–(b3 – b1) = 1 and b2 – b1 = –1

⇒ b3 – b1 = –1 and b2 – b1 = –1

⇒ b3 = –1 + a and b2 = –1 + b1  ...(ii)

Now from equation (i), we get

b1 + (–1 + b1) + (–1 + b1) = 1

⇒ 3b1 = 3

⇒ b1 = 1

From equation (ii), we get

b2 = 0 and b3 = 0

∴ `vecb = hati`

Therefore, `|vecb|` = 1

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2021-2022 (April) Term 2 - Delhi Set 1

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Prove that the volume of a parallelopiped with coterminal edges as  ` bara ,bar b , barc `

Hence find the volume of the parallelopiped with coterminal edges  `bar i+barj, barj+bark `


Find the volume of the parallelopiped whose coterminus edges are given by vectors

`2hati+3hatj-4hatk, 5hati+7hatj+5hatk and 4hati+5hatj-2hatk`


if `bara = 3hati - 2hatj+7hatk`, `barb  = 5hati + hatj -2hatk`and `barc = hati + hatj - hatk` then find `bara.(barbxxbarc)`


Give a condition that three vectors \[\vec{a}\], \[\vec{b}\] and \[\vec{c}\]  form the three sides of a triangle. What are the other possibilities?


Evaluate the following:

\[\left[ 2 \hat{i}\hat{ j}\ \hat{k}\right] + \left[\hat{i}\hat{ k}\hat {j} \right] + \left[\hat{ k}\hat{ j} 2\hat{ i} \right]\]


Find \[\left[ \vec{a} \vec{b} \vec{c} \right]\] , when \[\vec{a} = 2 \hat{i} - 3 \hat{j} , \vec{b} = \hat{i} + \hat{j} - \hat{k} \text{ and } \vec{c} = 3 \hat{i} - \hat{k}\]


Find the volume of the parallelopiped whose coterminous edges are represented by the vector:

\[\vec{a} = 2 \hat{i} - 3 \hat{j} + 4 \hat{k} , \vec{b} = \hat{i} + 2 \hat{j} - \hat{k} , \vec{c} = 3 \hat{i} - \hat{j} - 2 \hat{k}\]


Find the volume of the parallelopiped whose coterminous edges are represented by the vector:

\[\vec{a} = \hat{i} + \hat{j} + \hat{k} , \vec{b} =\hat{ i} - \hat{j} + \hat{k} , \vec{c} = \hat{i} + 2 \hat{j} - \hat{k}\]


\[\vec{a,} \vec{b} \text { and } \vec{c}\]  are the position vectors of points A, B and C respectively, prove that: \[\vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a}\]is a vector perpendicular to the plane of triangle ABC.

Write the value of \[\left[ 2 \hat { i } \ 3 \hat { j }\ 4 \hat { k } \right] .\]


Write the value of \[\left[ \hat {i} + \hat {j} \ \hat {j} + \hat {k} \ \hat {k} + \hat {i} \right] .\]


Find the values of 'a' for which the vectors

\[\vec{\alpha} = \hat {i} + 2 \hat {j} + \hat {k} , \vec{\beta} = a \hat {i} + \hat {j} + 2 \hat {k} \text { and } \vec{\gamma} = \hat {i} + 2 \hat {j} + a \hat { k }\] are coplanar.


If \[\vec{a,} \vec{b}\] \[\text { are non-collinear vectors, then find the value of} \left[ \vec{a} \vec{b}\hat { i} \right] \hat{i} + \left[ \vec{a} \vec{b} \hat {j} \right] \hat {j} + \left[ \vec{a} \vec{b} \hat {k} \right] \hat {k} .\]


If \[\left[ 2 \vec{a} + 4 \vec{b} \vec{c} \vec{d} \right] = \lambda\left[ \vec{a} \vec{c} \vec{d} \right] + \mu\left[ \vec{b} \vec{c} \vec{d} \right],\]  then λ + μ =


\[\left[ \vec{a} \vec{b} \vec{a} \times \vec{b} \right] + \left( \vec{a} . \vec{b} \right)^2 =\]


If \[\vec{a,} \vec{b,} \vec{c}\] are three non-coplanar vectors, then \[\left( \vec{a} + \vec{b} + \vec{c} \right) . \left[ \left( \vec{a} + \vec{b} \right) \times \left( \vec{a} + \vec{c} \right) \right]\] equals


Prove by vector method, that the angle subtended on semicircle is a right angle.


If a line has the direction ratios 4, −12, 18, then find its direction cosines


Find `bar"a".(bar"b" xx bar"c")` if `bar"a" = 3hat"i" - hat"j" + 4hat"k" , bar"b" = 2hat"i" + 3hat"j" - hat"k"` and `bar"c" = - 5hat"i" + 2hat"j" + 3hat"k"` 


If the vectors `3hat"i" + 5hat"k", 4hat"i" + 2hat"j" - 3hat"k"` and `3hat"i" + hat"j" + 4hat"k"`  are the coterminus edges of the parallelopiped, then find the volume of the parallelopiped.


The volume of the parallelepiped whose coterminus edges are `7hat"i" + lambdahat"j" - 3hat"k", hat"i" + 2hat"j" - hat"k", -3hat"i" + 7hat"j" + 5hat"k"` is 90 cubic units. Find the value of λ 


If θ is the angle between the unit vectors `bar"a"` and `bar"b"`, the `cos theta = theta/2` = ______.


Find the volume of the parallelopiped whose coterminous edges are `2hati - 3hatj, hati + hatj - hatk` and `3hati - hatk`.


If `bar"u" = hat"i" - 2hat"j" + hat"k" , bar"v" = 3hat"i" + hat"k"` and `bar"w" = hat"j" - hat"k"` are given vectors, then find `[bar"u" xx bar"v"     bar"u" xx bar"w"     bar"v" xx bar"w"]`


If the points A(1, 2, 3), B(–1, 1, 2), C(2, 3, 4) and D(–1, x, 0) are coplanar find the value of x.


Determine whether `bb(bara and barb)` are orthogonal, parallel or neither.

`bara=-3/5hati+1/2hatj+1/3hatk,barb=5hati+4hatj+3hatk`


Find the volume of a tetrahedron whose vertices are A(−1, 2, 3) B(3, −2, 1), C(2, 1, 3) and D(−1, −2, 4). 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×