हिंदी

Find the values of 'a' for which the vectors → α = ^ i + 2 ^ j + ^ k , → β = a ^ i + ^ j + 2 ^ k and → γ = ^ i + 2 ^ j + a ^ k are coplanar. - Mathematics

Advertisements
Advertisements

प्रश्न

Find the values of 'a' for which the vectors

α=i^+2j^+k^,β=ai^+j^+2k^ and γ=i^+2j^+ak^ are coplanar.

योग

उत्तर

Given:

α=i^+2j^+k^

β=ai^+j^+2k^

γ=i^+2j^+ak^

We know that three vectors α,β,γ are coplanar iff their scalar product is zero .

[αβγ]=0

|121a1212a|=0

1(a4)2(a22)+1(2a1)=0

2a2+3a1=0

2a23a+1=0

(a1)(2a1)=0

a=1,12

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 26: Scalar Triple Product - Exercise 26.1 [पृष्ठ १७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 26 Scalar Triple Product
Exercise 26.1 | Q 4 | पृष्ठ १७

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

if a¯=3i^-2j^+7k^, b¯ =5i^+j^-2k^and c¯=i^+j^-k^ then find a¯.(b¯×c¯)


Find the volume of the parallelopiped whose coterminous edges are represented by the vector:

a=i^+j^+k^,b=i^j^+k^,c=i^+2j^k^


Find the value of λ so that the following vector is coplanar:

a=2i^j^+k^,b=i^+2j^3k^,c=λi^+λj^+5k^


Find the value of λ for which the four points with position vectors

j^k^,4i^+5j^+λk^,3i^+9j^+4k^ and 4i^+4j^+4k^

 

Prove that: (ab){(bc)×(ca)}=0


a,b and c  are the position vectors of points A, B and C respectively, prove that: a×b+b×c+c×ais a vector perpendicular to the plane of triangle ABC.

Let a=i^+j^+k^,b=i^andc^=c1i^+c2j^+c3k^.Then,

If c1 = 1 and c2 = 2, find c3 which makes a,b and c coplanar.


Write the value of [2i^ 3j^ 4k^].


Write the value of [i^+j^ j^+k^ k^+i^].


If a,b,c are non-coplanar vectors, then find the value of a(b×c)(c×a)b+b(a×c)c(a×b).


If ra=rb=rc=0 for some non-zero vector r, then the value of [abc], is


For any three vectors a,b,c  the expression (ab).{(bc)×(ca)}  equals


If a=2i^3j^+5k^,b=3i^4j^+5k^ and c=5i^3j^2k^, then the volume of the parallelopiped with conterminous edges a+b,b+c,c+a is 


For non-zero vectors a,b and c the relation |(a×b)c|=|a||b||c| holds good, if


(a+b)(b+c)×(a+b+c)=


If a,b,c are three non-coplanar vectors, then (a+b+c).[(a+b)×(a+c)] equals


Find the volume of the parallelopiped, if the coterminus edges are given by the vectors 2i^+5j^-4k^,5i^+7j^+5k^,4i^+5j^-2k^.                               


Find the value of p, if the vectors i^-2j^+k^,2i^-5j^+pk^,5i^-9j^+4k^ are coplanar.


If a vector has direction angles 45° and 60°, find the third direction angle.


If a line has the direction ratios 4, −12, 18, then find its direction cosines


Find a¯.(b¯×c¯) if a¯=3i^-j^+4k^,b¯=2i^+3j^-k^ and c¯=-5i^+2j^+3k^ 


Find the volume of the parallelepiped whose coterminous edges are represented by the vectors -6i^+14j^+10k^,14i^-10j^-6k^ and 2i^+4j^-2k^


Determine whether the three vectors 2i^+3j^+k^,i^-2j^+2k^ and 3i^+j^+3k^ are coplanar


Let a, b, c be three non-zero vectors such that c is a unit vector perpendicular to both a and b. If the angle between a and b is π6, show that [abc]2=14|a|2|b|2


The volume of tetrahedron whose vertices are A(3, 7, 4), B(5, -2, 3), C(-4, 5, 6), D(1, 2, 3) is ______.


If the volume of tetrahedron whose vertices are A(0, 1, 2), B(2, -3, 0), C(1, 0, 2) and D(-2,-3,lambda) is 73 cu.units, then the value of λ is ______.


If θ is the angle between the unit vectors a¯ and b¯, the cosθ=θ2 = ______.


If a=i^+j^+k^,a.b = 1 and a×b=j^-k^, then find |b|.


If the direction cosines of a line are (1c,1c,1c) then ______.


Determine whether a¯ and b¯ are orthogonal, parallel or neither.

a¯=-35i^+12j^+13k^,b¯=5i^+4j^+3k^


Determine whether a¯andb¯ are orthogonal, parallel or neither.

a¯=-35i^+12j^+13k^,b¯=5i^+4j^+3k^


Find the volume of the parallelopiped whose coterminous edges are 2i^-3j^,i^+j^-k^ and 3i^-k^.


Determine whether a¯andb¯ are orthogonal, parallel or neither.

a¯=-35i^+12j^+13k^,b¯=5i^+4j^+3k^


Determine whether a¯andb¯ is orthogonal, parallel or neither.

a¯=-35i^+12j^+13k^,b¯=5i^+4j^+3k^


If u=i^-2j^+k^,r¯=3i^+k^andw=j^,k^  are given vectors, then find [u¯+w¯].[(w¯×r¯)×(r¯×w¯)]


Determine whether a¯andb¯ are orthogonal, parallel or neither.

a¯=-35i^+12j^+13k^,b¯=5i^+4j^+3k^


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.