Advertisements
Advertisements
प्रश्न
If \[\vec{a,} \vec{b,} \vec{c}\] are three non-coplanar vectors, then \[\left( \vec{a} + \vec{b} + \vec{c} \right) . \left[ \left( \vec{a} + \vec{b} \right) \times \left( \vec{a} + \vec{c} \right) \right]\] equals
विकल्प
0
\[\left[ \vec{a} \vec{b} \vec{c} \right]\]
\[2\left[ \vec{a} \vec{b} \vec{c} \right]\]
\[- \left[ \vec{a} \vec{b} \vec{c} \right]\]
उत्तर
\[ - \left[ \vec{a} \vec{b} \vec{c} \right]\]
We have
\[\left( \vec{a} + \vec{b} + \vec{c} \right) . \left[ \left( \vec{a} + \vec{b} \right) \times \left( \vec{a} + \vec{c} \right) \right]\]
\[ = \left( \vec{a} + \vec{b} + \vec{c} \right) . \left[ \left( \vec{a} + \vec{b} \right) \times \vec{a} + \left( \vec{a} + \vec{b} \right) \times \vec{c} \right] \left(\text { By definition of cross poduct }\right)\]
\[ = \left( \vec{a} + \vec{b} + \vec{c} \right) . \left[ \vec{a} \times \vec{a} + \vec{b} \times \vec{a} + \vec{a} \times \vec{c} + \vec{b} \times \vec{c} \right]\]
\[ = \left( \vec{a} + \vec{b} + \vec{c} \right) . \left[ 0 + \vec{b} \times \vec{a} + \vec{a} \times \vec{c} + \vec{b} \times \vec{c} \right]\]
\[ = \vec{a} . \left( \vec{b} \times \vec{a} \right) + \vec{a} . \left( \vec{a} \times \vec{c} \right) + \vec{a} . \left( \vec{b} \times \vec{c} \right) + \vec{b} . \left( \vec{b} \times \vec{a} \right) + \vec{b} . \left( \vec{a} \times \vec{c} \right) + \vec{b} . \left( \vec{b} \times \vec{c} \right) + \vec{c} . \left( \vec{b} \times \vec{a} \right) + \vec{c} . \left( \vec{a} \times \vec{c} \right) + \vec{c} . \left( \vec{b} \times \vec{c} \right) \]
\[ = \left[ \vec{a} \vec{b} \vec{a} \right] + \left[ \vec{a} \vec{a} \vec{c} \right] + \left[ \vec{a} \vec{b} \vec{c} \right] + \left[ \vec{b} \vec{b} \vec{a} \right] + \left[ \vec{b} \vec{a} \vec{c} \right] + \left[ \vec{b} \vec{b} \vec{c} \right] + \left[ \vec{c} \vec{b} \vec{a} \right] + \left[ \vec{c} \vec{a} \vec{c} \right] + \left[ \vec{c} \vec{b} \vec{c} \right]\]
\[ = 0 + 0 + \left[ \vec{a} \vec{b} \vec{c} \right] + 0 + \left[ \vec{b} \vec{a} \vec{c} \right] + 0 + \left[ \vec{c} \vec{b} \vec{a} \right] + 0 + 0\]
\[ = \left[ \vec{a} \vec{b} \vec{c} \right] - \left[ \vec{a} \vec{b} \vec{c} \right] - \left[ \vec{a} \vec{b} \vec{c} \right] \left( \because \left[ \vec{b} \vec{a} \vec{c} \right] = - \left[ \vec{c} \vec{a} \vec{b} \right], \left[ \vec{b} \vec{a} \vec{c} \right] = - \left[ \vec{a} \vec{b} \vec{c} \right] \right)\]
\[ = - \left[ \vec{a} \vec{b} \vec{c} \right]\]
APPEARS IN
संबंधित प्रश्न
Prove that the volume of a parallelopiped with coterminal edges as ` bara ,bar b , barc `
Hence find the volume of the parallelopiped with coterminal edges `bar i+barj, barj+bark `
Let `veca = hati + hatj + hatk = hati` and `vecc = c_1veci + c_2hatj + c_3hatk` then
1) Let `c_1 = 1` and `c_2 = 2`, find `c_3` which makes `veca, vecb "and" vecc`coplanar
2) if `c_2 = -1` and `c_3 = 1`, show that no value of `c_1`can make `veca, vecb and vecc` coplanar
if `bara = 3hati - 2hatj+7hatk`, `barb = 5hati + hatj -2hatk`and `barc = hati + hatj - hatk` then find `bara.(barbxxbarc)`
Show that the four points A, B, C and D with position vectors `4hati + 5hatj + hatk`, `-hatj-hatk`, `3hati + 9hatj + 4hatk` and `4(-hati + hatj + hatk)` respectively are coplanar
Find the volume of a parallelopiped whose edges are represented by the vectors:
`vec a = 2 hat i - 3 hat j - 4 hat k`, `vec b = hat i + 2 hat j - hat k` and `vec c = 3 hat i + hat j + 2 hatk`
Show of the following triad of vector is coplanar:
\[\hat{a} = \hat{i} - 2 \hat {j} + 3 \hat {k} , \hat {b} = - 2 \hat {i} + 3 \hat {j} - 4 \hat { k}, \hat {c} = \hat { i} - 3 \hat { j} + 5 \hat { k }\]
Find the value of λ so that the following vector is coplanar:
\[\vec{a} = \hat {i} + 3 \hat {j} , \vec{b} = 5 \hat {k} , \vec{c} = \lambda \hat {i} - \hat {j}\]
Write the value of \[\left[ \hat {i} + \hat {j} \ \hat {j} + \hat {k} \ \hat {k} + \hat {i} \right] .\]
Find the values of 'a' for which the vectors
\[\vec{\alpha} = \hat {i} + 2 \hat {j} + \hat {k} , \vec{\beta} = a \hat {i} + \hat {j} + 2 \hat {k} \text { and } \vec{\gamma} = \hat {i} + 2 \hat {j} + a \hat { k }\] are coplanar.
If \[\vec{a}\] lies in the plane of vectors \[\vec{b} \text { and } \vec{c}\], then which of the following is correct?
If \[\vec{a,} \vec{b,} \vec{c}\] are three non-coplanar mutually perpendicular unit vectors, then \[\left[ \vec{a} \vec{b} \vec{c} \right],\] is
If \[\vec{a,} \vec{b,} \vec{c}\] are non-coplanar vectors, then \[\frac{\vec{a} \cdot \left( \vec{b} \times \vec{c} \right)}{\left( \vec{c} \times \vec{a} \right) \cdot \vec{b}} + \frac{\vec{b} \cdot \left( \vec{a} \times \vec{c} \right)}{\vec{c} \cdot \left( \vec{a} \times \vec{b} \right)}\] is equal to
\[\left( \vec{a} + \vec{b} \right) \cdot \left( \vec{b} + \vec{c} \right) \times \left( \vec{a} + \vec{b} + \vec{c} \right) =\]
\[\left( \vec{a} + 2 \vec{b} - \vec{c} \right) \cdot \left\{ \left( \vec{a} - \vec{b} \right) \times \left( \vec{a} - \vec{b} - \vec{c} \right) \right\}\] is equal to
Find the value of p, if the vectors `hat"i" - 2hat"j" + hat"k", 2hat"i" -5hat"j"+"p" hat "k" , 5hat"i" -9hat"j" + 4 hat"k"` are coplanar.
Determine where `bar"a"` and `bar"b"` are orthogonal, parallel or neithe:
`bar"a" = - 9hat"i" + 6hat"j" + 15hat"k"` , `bar"b" = 6hat"i" - 4hat"j" - 10hat"k"`.
Determine where `bar"a"` and `bar"b"` are orthogonal, parallel or neithe:
`bar"a" = 2hat"i" + 3hat"j" - hat"k"` , `bar"b" = 5hat"i" - 2hat"j" + 4hat"k"`
Prove by vector method, that the angle subtended on semicircle is a right angle.
If a line has the direction ratios 4, −12, 18, then find its direction cosines
If the vectors `3hat"i" + 5hat"k", 4hat"i" + 2hat"j" - 3hat"k"` and `3hat"i" + hat"j" + 4hat"k"` are the coterminus edges of the parallelopiped, then find the volume of the parallelopiped.
Find the volume of the parallelepiped whose coterminous edges are represented by the vectors `- 6hat"i" + 14hat"j" + 10hat"k", 14hat"i" - 10hat"j" - 6hat"k"` and `2hat"i" + 4hat"j" - 2hat"k"`
The volume of the parallelepiped whose coterminus edges are `7hat"i" + lambdahat"j" - 3hat"k", hat"i" + 2hat"j" - hat"k", -3hat"i" + 7hat"j" + 5hat"k"` is 90 cubic units. Find the value of λ
If `vec"a" = hat"i" - hat"k", vec"b" = xhat"i" + hat"j" + (1 - x)hat"k", vec"c" = yhat"i" + xhat"j" + (1 + x - y)hat"k"`, show that `[(vec"a", vec"b", vec"c")]` depends on neither x nor y
The volume of tetrahedron whose vertices are A(3, 7, 4), B(5, -2, 3), C(-4, 5, 6), D(1, 2, 3) is ______.
If the scalar triple product of the vectors `-3hat"i" + 7hat"j" - 3hat"k", 3hat"i" - 7hat"j" + lambdahat"k" and 7hat"i" - 5hat"j" - 5hat"j"` is 272 then λ = ______.
If the points having the position vectors `2hat"i" + hat"j" - hat"k", -hat"j", 4hat"i" + 4hat"k"` and `lambdahat"i" + hat"k"` lie on the same plane, then λ is equal to ______.
If θ is the angle between the unit vectors `bar"a"` and `bar"b"`, the `cos theta = theta/2` = ______.
If `veca, vecb, vecc` are three non-coplanar vectors, then the value of `(veca.(vecb xx vecc))/((vecc xx veca).vecb) + (vecb.(veca xx vecc))/(vecc.(veca xx vecb))` is ______.
Let v = `2hati + hatj - hatk` and w = `hati + 3hatk`. If u is a unit vector, then maximum value of scalar triple product [u v w] is ______.
Determine whether `bara and barb` are orthogonal, parallel or neither.
`bara = - 3/5 hati+ 1/2 hatj + 1/3 hatk , barb= 5hati + 4hatj + 3hatk`
Determine whether `bb(bara and barb)` are orthogonal, parallel or neither.
`bar a = -3/5hati + 1/2hatj + 1/3hatk, barb = 5hati + 4hatj + 3hatk`
If `2hati + 3hatj, hati + hatj + hatk` and `λhati + 4hatj + 2hatk` taken in order are coterminous edges of a parallelopiped of volume 2 cu. units, then find the value of λ.
Find the volume of the parallelopiped whose coterminous edges are `2hati - 3hatj, hati + hatj - hatk` and `3hati - hatk`.
Find the volume of the parallelopiped whose vertices are A (3, 2, −1), B (−2, 2, −3) C (3, 5, −2) and D (−2, 5, 4).
If `barc = 3bara - 2barb` and `[bara barb + barc bara + barb + barc]` = 0 then prove that `[bara barb barc]` = 0
Determine whether `bb(bara and barb)` are orthogonal, parallel or neither.
`bara=-3/5hati+1/2hatj+1/3hatk,barb=5hati+4hatj+3hatk`