हिंदी

If → a , → B , → C Are Three Non-coplanar Mutually Perpendicular Unit Vectors, Then [ → a → B → C ] , is - Mathematics

Advertisements
Advertisements

प्रश्न

If a,b,c are three non-coplanar mutually perpendicular unit vectors, then [abc], is

विकल्प

  • ± 1

  • 0

  • -2

  • 2

MCQ
योग

उत्तर

±1

We have

[abc]

=(a×b).c

=|a×b||c|cos0 or |a×b||c|cos180(a,b,c are perpendicular to each other )

=|a×b|or|a×b|(|c|=1,cos0=1 and cos180=1)

=|a||b|sin90or|a||b|sin90(a is  perpendicular to b)

=1 or 1(|a|=1 and |b|=1)

=±1

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 26: Scalar Triple Product - MCQ [पृष्ठ १८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 26 Scalar Triple Product
MCQ | Q 3 | पृष्ठ १८

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the volume of the parallelopiped whose coterminus edges are given by vectors 2i^+5j^-4k^,5i^+7j^+5k^and4i^+5j^-2k^


Evaluate the following:

[2i^j^ k^]+[i^k^j^]+[k^j^2i^]


Find [abc] , when a=2i^3j^,b=i^+j^k^ and c=3i^k^


Show of the following triad of vector is coplanar:

a=4i^6j^2k^,b=i^+4j^+3k^,c=8i^j^+3k^


Find the value of λ so that the following vector is coplanar:

a=i^+2j^3k^,b=3i^+λj^+k^,c=i^+2j^+2k^


a,b and c  are the position vectors of points A, B and C respectively, prove that: a×b+b×c+c×ais a vector perpendicular to the plane of triangle ABC.

Let a=i^+j^+k^,b=i^andc^=c1i^+c2j^+c3k^.Then,

If c1 = 1 and c2 = 2, find c3 which makes a,b and c coplanar.


Find λ for which the points A (3, 2, 1), B (4, λ, 5), C (4, 2, −2) and D (6, 5, −1) are coplanar.


If four points A, B, C and D with position vectors 4 i^+3 j^+3 k^,5 i^+ xj^+7 k^,5 i^+3 j^ and 7i^+6j^+k^ respectively are coplanar, then find the value of x.


If a,b  are non-collinear vectors, then find the value of[abi^]i^+[abj^]j^+[abk^]k^.


If [3a+7bcd]=λ[acd]+μ[bcd], then find the value of λ + μ.


The value of [ab,bc,ca], where |a|=1,|b|=5,|c|=3, is 


If ra=rb=rc=0 for some non-zero vector r, then the value of [abc], is


If a=2i^3j^+5k^,b=3i^4j^+5k^ and c=5i^3j^2k^, then the volume of the parallelopiped with conterminous edges a+b,b+c,c+a is 


Find the volume of the parallelopiped, if the coterminus edges are given by the vectors 2i^+5j^-4k^,5i^+7j^+5k^,4i^+5j^-2k^.                               


Determine where a¯ and b¯ are orthogonal, parallel or neithe:

a¯=2i^+3j^-k^ , b¯=5i^-2j^+4k^


Determine where a¯ and b¯ are orthogonal, parallel or neithe:

a¯=4i^-j^+6k^ , b¯=5i^-2j^+4k^


If a vector has direction angles 45° and 60°, find the third direction angle.


If a line has the direction ratios 4, −12, 18, then find its direction cosines


Using properties of scalar triple product, prove that [a¯+b¯ b¯+c¯ c¯+a¯]=2[a¯ b¯ c¯].


Find the volume of the parallelepiped whose coterminous edges are represented by the vectors -6i^+14j^+10k^,14i^-10j^-6k^ and 2i^+4j^-2k^


Find the altitude of a parallelepiped determined by the vectors a=-2i^+5j^+3k^,b=i^+3j^-2k^ and c=-i+j+4k if the base is taken as the parallelogram determined by b and c


If a=i^-k^,b=xi^+j^+(1-x)k^,c=yi^+xj^+(1+x-y)k^, show that  [abc] depends on neither x nor y


If the volume of the tetrahedron formed by the coterminous edges a¯,b¯andc¯ is 5, then the volume of the parallelopiped formed by the coterminous edges a¯×b¯,b¯×c¯andc¯×a¯ is


Let a¯,b¯,c¯ be three vectors such that a¯0, and a¯×b¯=2a¯×c¯,|a¯|=|c¯|=1,|b¯|=4 and |b¯×c¯|=15. If b¯-2c¯=λa¯, then λ is equal to ______.


If a=i^+j^+k^,a.b = 1 and a×b=j^-k^, then find |b|.


Let v = 2i^+j^-k^ and w = i^+3k^. If u is a unit vector, then maximum value of scalar triple product [u v w] is ______.


Prove that the volume of a tetrahedron with coterminus edges a¯,b¯ and c¯ is 16[a¯b¯c¯].

Hence, find the volume of tetrahedron whose coterminus edges are a¯=i^+2j^+3k^,b¯=-i^+j^+2k^ and c¯=2i^+j^+4k^.


Determine whether a¯andb¯ are orthogonal, parallel or neither.

a¯=-35i^+12j^+13k^,b¯=5i^+4j^+3k^


Find the volume of the parallelopiped whose coterminous edges are 2i^-3j^,i^+j^-k^ and 3i^-k^.


If u¯=i^-2j^+k^,v¯=3i^+k^ and w¯=j^-k^ are given vectors, then find [u¯×v¯   u¯×w¯   v¯×w¯]


Determine whether a¯andb¯ is orthogonal, parallel or neither.

a¯=-35i^+12j^+13k^,b¯=5i^+4j^+3k^


Find the volume of a tetrahedron whose vertices are A(−1, 2, 3) B(3, −2, 1), C (2, 1, 3) and D(−1, −2, 4).


Find the volume of a tetrahedron whose vertices are A(−1, 2, 3) B(3, −2, 1), C(2, 1, 3) and D(−1, −2, 4). 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.