हिंदी

→ a , → B and → C Are the Position Vectors of Points A, B and C Respectively, Prove that - Mathematics

Advertisements
Advertisements

प्रश्न

\[\vec{a,} \vec{b} \text { and } \vec{c}\]  are the position vectors of points A, B and C respectively, prove that: \[\vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a}\]is a vector perpendicular to the plane of triangle ABC.
योग

उत्तर

We know that if any vector is perpendicular to all three sides of ∆ ABC, it must be perpendicular to the plane of ∆ ABC .

Now, 

\[ \overrightarrow{AB} = \vec{b} - \vec{a} , \overrightarrow{BC} = \vec{c} - \vec{b} , \overrightarrow{CA} = \vec{a} - \vec{c} \left( Position vectors of A, B and C are \vec{a} , \vec{b} , \vec{c} \right)\]

We have

\[ \overrightarrow{AB} . ( \vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a} )\]

\[ = \left( \vec{b} - \vec{a} \right) . \left( \vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a} \right) \]

\[ = \vec{b} . \left( \vec{a} \times \vec{b} \right) + \vec{b} . \left( \vec{b} \times \vec{c} \right) + \vec{b} . \left( \vec{c} \times \vec{a} \right) - \vec{a} . \left( \vec{a} \times \vec{b} \right) - \vec{a} . \left( \vec{b} \times \vec{c} \right) - \vec{a} . \left( \vec{c} \times \vec{a} \right) \left( By distributive law \right)\]

\[ = \left[ \vec{b} \vec{a} \vec{b} \right] + \left[ \vec{b} \vec{b} \vec{c} \right] + \left[ \vec{b} \vec{c} \vec{a} \right] - \left[ \vec{a} \vec{a} \vec{b} \right] - \left[ \vec{a} \vec{b} \vec{c} \right] - \left[ \vec{a} \vec{c} \vec{a} \right]\]

\[ = 0 + 0 + \left[ \vec{b} \vec{c} \vec{a} \right] - 0 - \left[ \vec{a} \vec{b} \vec{c} \right] - 0\]

\[ = 0 \left( \because \left[ \vec{b} \vec{c} \vec{a} \right] = \left[ \vec{a} \vec{b} \vec{c} \right] \right) \]

\[ \overrightarrow{BC} . ( \vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a} )\]

\[ = \left( \vec{c} - \vec{b} \right) . \left( \vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a} \right) \]

\[ = \vec{c} . \left( \vec{a} \times \vec{b} \right) + \vec{c} . \left( \vec{b} \times \vec{c} \right) + \vec{c} . \left( \vec{c} \times \vec{a} \right) - \vec{b} . \left( \vec{a} \times \vec{b} \right) - \vec{b} . \left( \vec{b} \times \vec{c} \right) - \vec{b} . \left( \vec{c} \times \vec{a} \right) \left( By distributive law \right)\]

\[ = \left[ \vec{c} \vec{a} \vec{b} \right] + \left[ \vec{c} \vec{b} \vec{c} \right] + \left[ \vec{c} \vec{c} \vec{a} \right] - \left[ \vec{b} a^\to \vec{b} \right] - \left[ \vec{b} \vec{b} \vec{c} \right] - \left[ \vec{b} \vec{c} \vec{a} \right]\]

\[ = \left[ \vec{c} \vec{a} \vec{b} \right] + 0 + 0 - 0 - 0 - \left[ \vec{b} \vec{c} \vec{a} \right]\]

\[ = 0 \left( \because \left[ \vec{c} \vec{a} \vec{b} \right] = \left[ \vec{b} \vec{c} \vec{a} \right] \right) \]

Similarly, 

\[ \overrightarrow{CA} . ( \vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a} )\]

\[ = \left( \vec{a} - \vec{c} \right) . \left( \vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a} \right) \]

\[ = \vec{a} . \left( \vec{a} \times \vec{b} \right) + \vec{a} . \left( \vec{b} \times \vec{c} \right) + \vec{a} \left( \vec{c} \times \vec{a} \right) - \vec{c} . \left( \vec{a} \times \vec{b} \right) - \vec{c} . \left( \vec{b} \times \vec{c} \right) - \vec{c} . \left( \vec{c} \times \vec{a} \right) \left( By distributive law \right)\]

\[ = \left[ \vec{a} \vec{a} \vec{b} \right] + \left[ \vec{a} \vec{b} \vec{c} \right] + \left[ \vec{a} \vec{c} \vec{a} \right] - \left[ \vec{c} \vec{a} \vec{b} \right] - \left[ \vec{c} \vec{b} \vec{c} \right] - \left[ \vec{c} \vec{c} \vec{a} \right]\]

\[ = 0 + \left[ \vec{a} \vec{b} \vec{c} \right] + 0 - \left[ \vec{c} \vec{a} \vec{b} \right] - 0 - 0\]

\[ = 0 \left( \because \left[ \vec{c} \vec{a} \vec{b} \right] = \left[ \vec{a} \vec{b} \vec{c} \right] \right) \]

\[\text {Hence, vector } \vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a}\text { is perpendicular to all sides of ∆ ABC and also perpendicular to the plane of ∆ ABC } .\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 26: Scalar Triple Product - Exercise 26.1 [पृष्ठ १७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 26 Scalar Triple Product
Exercise 26.1 | Q 11 | पृष्ठ १७

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Prove that the volume of a parallelopiped with coterminal edges as  ` bara ,bar b , barc `

Hence find the volume of the parallelopiped with coterminal edges  `bar i+barj, barj+bark `


Prove that a necessary and sufficient condition for three vectors \[\vec{a}\], \[\vec{b}\], \[\vec{c}\]  to be coplanar is that there exist scalars l, m, n not all zero simultaneously such that \[l \vec{a} + m \vec{b} + n \vec{c} = \vec{0} .\]


Evaluate the following:

\[\left[ 2 \hat{i}\hat{ j}\ \hat{k}\right] + \left[\hat{i}\hat{ k}\hat {j} \right] + \left[\hat{ k}\hat{ j} 2\hat{ i} \right]\]


Find \[\left[ \vec{a} \vec{b} \vec{c} \right]\] , when \[\vec{a} = 2 \hat{i} - 3 \hat{j} , \vec{b} = \hat{i} + \hat{j} - \hat{k} \text{ and } \vec{c} = 3 \hat{i} - \hat{k}\]


Find the volume of the parallelopiped whose coterminous edges are represented by the vector:

\[\vec{a} = 2 \hat{i} + 3 \hat{j} + 4 \hat{k} , \vec{b} =\hat{ i} + 2 \hat{j} - \hat{k} , \vec{c} = 3 \hat{i} - \hat{j} + 2 \hat{k}\]


Show of the following triad of vector is coplanar:

\[\vec{a} = \hat {i} + 2 \hat{j} - \hat {k} , \vec{b} = 3 \hat {i} + 2 \hat{j} + 7 \hat {k} , \vec{c} = 5 \hat {i} + 6 \hat { j} + 5 \hat {k}\]


Show of the following triad of vector is coplanar:

\[\vec{a} = - 4 \hat{i} - 6 \hat{j} - 2 \hat{k} , \vec{b} = -\hat{ i} + 4 \hat{j} + 3 \hat{k} , \vec{c} = - 8 \hat{i} - \hat{j} + 3 \hat{k}\]


Find the value of λ so that the following vector is coplanar:

\[\vec{a} = \hat{i} - \hat{j} + \hat{k} , \vec{b} = 2 \hat {i} + \hat {j} - \hat {k} , \vec{c} = \lambda\hat { i} - \hat {j} + \lambda \hat {k}\]


Show that four points whose position vectors are

\[6 \hat { i} - 7 \hat {j} , 16 \hat { i} - 19 \hat { j} - 4 \hat {k} , 3 \hat {i} - 6 \hat {k} , 2 \hat { i} - 5 \hat {j}+ 10 \hat {k}\]

 

\[\text {Let } \vec{a} = \hat {i} + \hat {j} + \hat {k} , \vec{b} = \hat {i} \text{ and } \hat {c} = c_1 \hat{i} + c_2 \hat {j} + c_3 \hat {k} . \text {Then},\]

If c2 = −1 and c3 = 1, show that no value of c1 can make \[\vec{a,} \vec{b}\text { and } \vec{c}\] coplanar.


Find λ for which the points A (3, 2, 1), B (4, λ, 5), C (4, 2, −2) and D (6, 5, −1) are coplanar.


If four points A, B, C and D with position vectors 4 \[\hat { i} +3\] \[\hat { j} +3\] \[\hat { k} ,5\] \[\hat { i} +\] \[x\hat { j} +7\] \[\hat { k} ,5\] \[\hat { i} +3\] \[\hat { j}\] and \[7 \hat{i} + 6 \hat{j} + \hat{k}\] respectively are coplanar, then find the value of x.


Write the value of \[\left[ \hat {i} - \hat {j} \hat {j} - \hat {k} \hat {k} - \hat {i} \right] .\]


Find \[\vec{a} . \left( \vec{b} \times \vec{c} \right)\],  if \[\vec{a} = 2 \hat {i} + \hat {j} + 3 \hat {k} , \vec{b} = - \hat {i} + 2 \hat {j} + \hat {k}\] and  \[\vec{c} = 3 \hat { i} + \hat {j} + 2 \hat {k}\].


Let \[\vec{a} = a_1 \hat { i }+ a_2 \hat {j} + a_3 \hat {k} , \vec{b} = b_1 \hat {i} + b_2 \hat { j } + b_3 \hat { k} \text { and } \vec{c} = c_1 \hat { i } + c_2 \hat{j } + c_3\text {  k }\] be three non-zero vectors such that \[\vec{c}\] is a unit vector perpendicular to both \[\vec{a} \text { and } \vec{b}\]. If the angle between \[\vec{a} \text { and } \vec{b}\] is \[\frac{\pi}{6},\] , then

\[\begin{vmatrix}a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3\end{vmatrix}^2\] is equal to


For non-zero vectors \[\vec{a,} \vec{b} \text { and }\vec{c}\] the relation \[\left| \left( \vec{a} \times \vec{b} \right) \cdot \vec{c} \right| = \left| \vec{a} \right| \left| \vec{b} \right| \left| \vec{c} \right|\] holds good, if


\[\left( \vec{a} + 2 \vec{b} - \vec{c} \right) \cdot \left\{ \left( \vec{a} - \vec{b} \right) \times \left( \vec{a} - \vec{b} - \vec{c} \right) \right\}\] is equal to


Find the value of p, if the vectors `hat"i" - 2hat"j" + hat"k", 2hat"i" -5hat"j"+"p" hat "k" , 5hat"i" -9hat"j" + 4 hat"k"` are coplanar.


Show that the vectors `hat (i) - 2 hat(j) + 3 hat (k), - 2 hat(i) + 3 hat(j) - 4 hat(k) " and " hat(i) - 3 hat(j) + 5 hat(k) ` are coplanar.


Determine where `bar"a"` and `bar"b"` are orthogonal, parallel or neithe:

`bar"a" = - 9hat"i" + 6hat"j" + 15hat"k"` , `bar"b" = 6hat"i" - 4hat"j" - 10hat"k"`.


If the vectors `3hat"i" + 5hat"k", 4hat"i" + 2hat"j" - 3hat"k"` and `3hat"i" + hat"j" + 4hat"k"`  are the coterminus edges of the parallelopiped, then find the volume of the parallelopiped.


If `bar"u" = hat"i" - 2hat"j" + hat"k" , bar"v" = 3hat"i" + hat"k"` and `bar"w" = hat"j" - hat"k"` are given vectors, then find `(bar"u" + bar"w").[(bar"u" xx bar"v") xx (bar"v" xx bar"w")]`


If `vec"a" = hat"i" - 2hat"j" + 3hat"k", vec"b" = 2hat"i" + hat"j" - 2hat"k", vec"c" = 3hat"i" + 2hat"j" + hat"k"`, find `vec"a" * (vec"b" xx vec"c")`


Find the volume of the parallelepiped whose coterminous edges are represented by the vectors `- 6hat"i" + 14hat"j" + 10hat"k", 14hat"i" - 10hat"j" - 6hat"k"` and `2hat"i" + 4hat"j" - 2hat"k"`


If `vec"a", vec"b", vec"c"` are three non-coplanar vectors represented by concurrent edges of a parallelepiped of volume 4 cubic units, find the value of `(vec"a" + vec"b") * (vec"b" xx vec"c") + (vec"b" + vec"c")* (vec"c" xx vec"a") + (vec"c" + vec"a") * (vec"a" xx vec"b")`


If `vec"a" = hat"i" - hat"k", vec"b" = xhat"i" + hat"j" + (1 - x)hat"k", vec"c" = yhat"i" + xhat"j" + (1 + x - y)hat"k"`, show that  `[(vec"a", vec"b", vec"c")]` depends on neither x nor y


If the vectors `"a"hat"i" + "a"hat"j" + "c"hat"k", hat"i" + hat"k"` and `"c"hat"i" + "c"hat"j" + "b"hat"k"` are coplanar, prove that c is the geometric mean of a and b


If the volume of the tetrahedron formed by the coterminous edges `bar"a", bar"b" and bar"c"` is 5, then the volume of the parallelopiped formed by the coterminous edges `bar"a" xx bar"b", bar"b" xx bar"c" and bar"c" xx bar"a"` is


If the points having the position vectors `2hat"i" + hat"j" - hat"k", -hat"j", 4hat"i" + 4hat"k"` and `lambdahat"i" + hat"k"` lie on the same plane, then λ is equal to ______.


If `veca = hati + hatj + hatk, veca.vecb` = 1 and `veca xx vecb = hatj - hatk`, then find `|vecb|`.


Prove that the volume of a tetrahedron with coterminus edges `overlinea, overlineb` and `overlinec` is `1/6[(overlinea, overlineb, overlinec)]`.

Hence, find the volume of tetrahedron whose coterminus edges are `overlinea = hati + 2hatj + 3hatk, overlineb = -hati + hatj + 2hatk` and `overlinec = 2hati + hatj + 4hatk`.


Determine whether `bara and barb` are orthogonal, parallel or neither.

`bara = -3/5hati + 1/2hatj + 1/3hatk, barb = 5hati + 4hatj + 3hatk`


If `2hati + 3hatj, hati + hatj + hatk` and `λhati + 4hatj + 2hatk` taken in order are coterminous edges of a parallelopiped of volume 2 cu. units, then find the value of λ.


Determine whether `bara and barb` are orthogonal, parallel or neither.

`bara = -3/5hati + 1/2hatj +1/3 hatk, barb = 5hati + 4hatj +3hatk`


Determine whether `bara and barb` are orthogonal, parallel or neither.

`bara = -3/5 hati + 1/2 hatj + 1/3 hatk,  barb = 5 hati + 4 hatj + 3 hatk`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×