Advertisements
Advertisements
प्रश्न
If `vec"a", vec"b", vec"c"` are three non-coplanar vectors represented by concurrent edges of a parallelepiped of volume 4 cubic units, find the value of `(vec"a" + vec"b") * (vec"b" xx vec"c") + (vec"b" + vec"c")* (vec"c" xx vec"a") + (vec"c" + vec"a") * (vec"a" xx vec"b")`
उत्तर
Let `vec"a", vec"b", vec"c"` be the concurrent edges of parallelepiped
Given volume of parallelepiped = 4 cubic units
`[vec"a", vec"b", vec"c"]` = 4
But, `[vec"a", vec"b", vec"c"] = +- 4`
`(vec"a" + vec"b")*(vec"b" xx vec"c") = vec"a"*(vec"b" xx vec"c") + vec"b"*(vec"b" xx vec"c")`
= `[vec"a", vec"b", vec"c"] + [vec"b", vec"b", vec"c"]`
= `[vec"a", vec"b", vec"c"]` + 0
= `[vec"a", vec"b", vec"c"]` .......(1)
Similarly `(vec"b" + vec"c")*(vec"c" xx vec"a") = vec"b"*(vec"c" xx vec"a")`
= `[vec"b", vec"c", vec"a"]`
= `[vec"a", vec"b", vec"c"]` ........(2)
`(vec"c" + vec"a")*(vec"a" xx vec"b") = vec"c"*(vec"a" xx vec"b")`
= `[vec"c", vec"a", vec"b"]`
= `[vec"a",, vec"b", vec"c"]` ........(3)
So, (1) + (2) + (3) = `2[vec"a", vec"b", vec"c"]`
= 3(± 4)
⇒ ± 12
APPEARS IN
संबंधित प्रश्न
Prove that, for any three vector `veca,vecb,vecc [vec a+vec b,vec b+vec c,vecc+veca]=2[veca vecb vecc]`
Find λ, if the vectors `veca=hati+3hatj+hatk,vecb=2hati−hatj−hatk and vecc=λhatj+3hatk` are coplanar.
Find the volume of a tetrahedron whose vertices are A(−1, 2, 3), B(3, −2, 1), C(2, 1, 3) and D(−1, −2, 4).
Evaluate the following:
\[\left[ 2 \hat{i}\hat{ j}\ \hat{k}\right] + \left[\hat{i}\hat{ k}\hat {j} \right] + \left[\hat{ k}\hat{ j} 2\hat{ i} \right]\]
Find \[\left[ \vec{a} \vec{b} \vec{c} \right]\] , when \[\vec{a} =\hat{ i} - 2 \hat{j} + 3 \hat{k} , \vec{b} = 2 \hat{i} + \hat{j} - \hat{k}\text{ and } \vec{c} = \hat{j} + \hat{k}\]
Find the value of λ so that the following vector is coplanar:
\[\vec{a} = \hat {i} + 3 \hat {j} , \vec{b} = 5 \hat {k} , \vec{c} = \lambda \hat {i} - \hat {j}\]
If \[\vec{a}\] lies in the plane of vectors \[\vec{b} \text { and } \vec{c}\], then which of the following is correct?
The value of \[\left[ \vec{a} - \vec{b} , \vec{b} - \vec{c} , \vec{c} - \vec{a} \right], \text { where } \left| \vec{a} \right| = 1, \left| \vec{b} \right| = 5, \left| \vec{c} \right| = 3, \text { is }\]
For any three vectors \[\vec{a,} \vec{b,} \vec{c}\] the expression \[\left( \vec{a} - \vec{b} \right) . \left\{ \left( \vec{b} - \vec{c} \right) \times \left( \vec{c} - \vec{a} \right) \right\}\] equals
For non-zero vectors \[\vec{a,} \vec{b} \text { and }\vec{c}\] the relation \[\left| \left( \vec{a} \times \vec{b} \right) \cdot \vec{c} \right| = \left| \vec{a} \right| \left| \vec{b} \right| \left| \vec{c} \right|\] holds good, if
Find the volume of the parallelopiped, if the coterminus edges are given by the vectors `2hat"i" + 5hat"j" -4 hat"k", 5hat"i" +7hat"j"+5 hat "k" , 4hat"i" +5hat"j" - 2 hat"k"`.
Determine where `bar"a"` and `bar"b"` are orthogonal, parallel or neithe:
`bar"a" = 2hat"i" + 3hat"j" - hat"k"` , `bar"b" = 5hat"i" - 2hat"j" + 4hat"k"`
If the vectors `- 3hat"i" + 4hat"j" - 2hat"k" , hat"i" + 2hat"k"` and `hat"i" - "p"hat"j"` are coplanar, then find the value of p.
If `bar"u" = hat"i" - 2hat"j" + hat"k" , bar"v" = 3hat"i" + hat"k"` and `bar"w" = hat"j" - hat"k"` are given vectors, then find `(bar"u" + bar"w").[(bar"u" xx bar"v") xx (bar"v" xx bar"w")]`
Find the volume of the parallelepiped whose coterminous edges are represented by the vectors `- 6hat"i" + 14hat"j" + 10hat"k", 14hat"i" - 10hat"j" - 6hat"k"` and `2hat"i" + 4hat"j" - 2hat"k"`
Let `bar"a", bar"b", bar"c"` be three vectors such that `bar"a" ≠ 0`, and `bar"a" xx bar"b" = 2bar"a" xx bar"c", |bar"a"| = |bar"c"| = 1, |bar"b"| = 4` and `|bar"b" xx bar"c"| = sqrt(15)`. If `bar"b" - 2bar"c" = lambdabar"a"`, then λ is equal to ______.
Let v = `2hati + hatj - hatk` and w = `hati + 3hatk`. If u is a unit vector, then maximum value of scalar triple product [u v w] is ______.
Determine whether `bara and barb` are orthogonal, parallel or neither.
`bara = -3/5hati + 1/2hatj + 1/3hatk, barb = 5hati + 4hatj + 3hatk`
Determine whether `bb(bara and barb)` are orthogonal, parallel or neither.
`bara=-3/5hati+1/2hatj+1/3hatk,barb=5hati+4hatj+3hatk`
Determine whether `bara and barb` is orthogonal, parallel or neither.
`bara = -3/5hati + 1/2hatj + 1/3hatk, barb = 5hati + 4hatj + 3hatk`