English
Tamil Nadu Board of Secondary EducationHSC Science Class 12

If abca→,b→,c→ are three non-coplanar vectors represented by concurrent edges of a parallelepiped of volume 4 cubic units, find the value of abbcbccacaab(a→+b→)⋅(b→×c→)+(b→+c→)⋅(c→×a→)+(c→+a→)⋅(a→×b→) - Mathematics

Advertisements
Advertisements

Question

If `vec"a", vec"b", vec"c"` are three non-coplanar vectors represented by concurrent edges of a parallelepiped of volume 4 cubic units, find the value of `(vec"a" + vec"b") * (vec"b" xx vec"c") + (vec"b" + vec"c")* (vec"c" xx vec"a") + (vec"c" + vec"a") * (vec"a" xx vec"b")`

Sum

Solution

Let `vec"a", vec"b", vec"c"` be the concurrent edges of parallelepiped

Given volume of parallelepiped = 4 cubic units

`[vec"a",  vec"b",  vec"c"]` = 4

But, `[vec"a",  vec"b", vec"c"] = +-  4`

`(vec"a" + vec"b")*(vec"b" xx vec"c") = vec"a"*(vec"b" xx vec"c") + vec"b"*(vec"b" xx vec"c")`

= `[vec"a",  vec"b",  vec"c"] + [vec"b",  vec"b", vec"c"]`

= `[vec"a",  vec"b",  vec"c"]` + 0

= `[vec"a",  vec"b",  vec"c"]`  .......(1)

Similarly `(vec"b" + vec"c")*(vec"c" xx vec"a") = vec"b"*(vec"c" xx vec"a")`

= `[vec"b",  vec"c",  vec"a"]`

= `[vec"a",  vec"b",  vec"c"]`  ........(2)

`(vec"c" + vec"a")*(vec"a" xx vec"b") = vec"c"*(vec"a" xx vec"b")`

= `[vec"c",  vec"a",  vec"b"]`

= `[vec"a",, vec"b", vec"c"]`  ........(3)

So, (1) + (2) + (3) = `2[vec"a",  vec"b",  vec"c"]`

= 3(± 4)

⇒ ± 12

shaalaa.com
  Is there an error in this question or solution?
Chapter 6: Applications of Vector Algebra - Exercise 6.2 [Page 237]

APPEARS IN

Samacheer Kalvi Mathematics - Volume 1 and 2 [English] Class 12 TN Board
Chapter 6 Applications of Vector Algebra
Exercise 6.2 | Q 4 | Page 237

RELATED QUESTIONS

Let `veca = hati + hatj + hatk = hati` and `vecc = c_1veci + c_2hatj + c_3hatk` then

1) Let `c_1 = 1` and `c_2 = 2`, find `c_3` which makes `veca, vecb "and" vecc`coplanar

2) if `c_2 = -1` and `c_3 = 1`, show that no value of `c_1`can make `veca, vecb and vecc` coplanar


Find the volume of a parallelopiped whose edges are represented by the vectors:

`vec a = 2 hat i - 3 hat j - 4 hat k`, `vec b  = hat i + 2 hat j - hat k` and `vec c = 3 hat i +  hat j +  2 hatk`


Evaluate the following:

\[\left[\hat{i}\hat{j}\hat{k} \right] + \left[ \hat{j}\hat{k}\hat {i} \right] + \left[ \hat{k}\hat{i} \hat{j} \right]\]


Find the volume of the parallelopiped whose coterminous edges are represented by the vector:

\[\vec{a} = 11 \hat{i} , \vec{b} = 2 \hat{j} , \vec{c} = 13 \hat{k}\]


\[\text {Let } \vec{a} = \hat {i} + \hat {j} + \hat {k} , \vec{b} = \hat {i} \text{and} \hat {c} = c_1 \hat{i} + c_2 \hat {j} + c_3 \hat {k} . \text {Then},\]

If c1 = 1 and c2 = 2, find c3 which makes \[\vec{a,} \vec{b} \text { and } \vec{c}\] coplanar.


If four points A, B, C and D with position vectors 4 \[\hat { i} +3\] \[\hat { j} +3\] \[\hat { k} ,5\] \[\hat { i} +\] \[x\hat { j} +7\] \[\hat { k} ,5\] \[\hat { i} +3\] \[\hat { j}\] and \[7 \hat{i} + 6 \hat{j} + \hat{k}\] respectively are coplanar, then find the value of x.


Find \[\vec{a} . \left( \vec{b} \times \vec{c} \right)\],  if \[\vec{a} = 2 \hat {i} + \hat {j} + 3 \hat {k} , \vec{b} = - \hat {i} + 2 \hat {j} + \hat {k}\] and  \[\vec{c} = 3 \hat { i} + \hat {j} + 2 \hat {k}\].


For any three vectors \[\vec{a,} \vec{b,} \vec{c}\]  the expression \[\left( \vec{a} - \vec{b} \right) . \left\{ \left( \vec{b} - \vec{c} \right) \times \left( \vec{c} - \vec{a} \right) \right\}\]  equals


If \[\left[ 2 \vec{a} + 4 \vec{b} \vec{c} \vec{d} \right] = \lambda\left[ \vec{a} \vec{c} \vec{d} \right] + \mu\left[ \vec{b} \vec{c} \vec{d} \right],\]  then λ + μ =


Determine where `bar"a"` and `bar"b"` are orthogonal, parallel or neithe:

`bar"a" = 2hat"i" + 3hat"j" - hat"k"` , `bar"b" = 5hat"i" - 2hat"j" + 4hat"k"`


Using properties of scalar triple product, prove that `[(bar"a" + bar"b",  bar"b" + bar"c",  bar"c" + bar"a")] = 2[(bar"a",  bar"b",  bar"c")]`.


If the direction cosines of a line are `(1/c, 1/c, 1/c)` then ______.


Let v = `2hati + hatj - hatk` and w = `hati + 3hatk`. If u is a unit vector, then maximum value of scalar triple product [u v w] is ______.


Determine whether `bb(bara and barb)` are orthogonal, parallel or neither.

`bar a = -3/5hati + 1/2hatj + 1/3hatk, barb = 5hati + 4hatj + 3hatk`


If `2hati + 3hatj, hati + hatj + hatk` and `λhati + 4hatj + 2hatk` taken in order are coterminous edges of a parallelopiped of volume 2 cu. units, then find the value of λ.


Find the volume of the parallelopiped whose vertices are A (3, 2, −1), B (−2, 2, −3) C (3, 5, −2) and D (−2, 5, 4). 


Determine whether `bara and barb` is orthogonal, parallel or neither.

`bara = -3/5hati + 1/2hatj + 1/3hatk, barb = 5hati + 4hatj + 3hatk`


Determine whether `bara and barb` are orthogonal, parallel or neither.

`bara = -3/5 hati + 1/2 hatj + 1/3 hatk,  barb = 5 hati + 4 hatj + 3 hatk`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×