English

If [ 2 → a + 4 → B → C → D ] = λ [ → a → C → D ] + μ [ → B → C → D ] , Then λ + μ = - Mathematics

Advertisements
Advertisements

Question

If [2a+4bcd]=λ[acd]+μ[bcd],  then λ + μ =

Options

  • 6

  • -6

  • 10

  • 8

MCQ
Sum

Solution

6

We have

[2a+4bcd]=λ[acd]+μ[bcd]

[(2a+4b)×c].d=λ[acd]+μ[bcd]( By definition of scalar triple product )

[(2a×c)+(4b×c)].d=λ[acd]+μ[bcd]

(2a×c).d+(4b×c).d=λ[acd]+μ[bcd]

[2acd]+[4bcd]=λ[acd]+μ[bcd]

2[acd]+4[bcd]=λ[acd]+μ[bcd]([λabc]=λ[abc] for any scalar λ)

Comparing both sides, we get

λ=2

μ=4

λ+μ=2+4=6

shaalaa.com
  Is there an error in this question or solution?
Chapter 26: Scalar Triple Product - MCQ [Page 19]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 26 Scalar Triple Product
MCQ | Q 9 | Page 19

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

If A, B, C, D are (1, 1, 1), (2, 1, 3), (3, 2, 2), (3, 3, 4) respectively, then find the volume of parallelopiped with AB, AC and AD as the concurrent edges.


If c¯=3a¯-2b¯ Prove that [a¯b¯c¯]=0


Find λ, if the vectors a=i^+3j^+k^,b=2i^j^k^ and c=λj^+3k^  are coplanar.


If a¯=3i^-j^+4k^,b¯=2i^+3j^-k^,c¯=-5i^+2j^+3k^ then a¯.(b¯×c¯)=

(A) 100

(B) 101

(C) 110

(D) 109


Let a =i^+j^+k^=i^ and c=c1i+c2j^+c3k^ then

1) Let c1=1 and c2=2, find c3 which makes a,bandccoplanar

2) if c2=-1 and c3=1, show that no value of c1can make a,bandc coplanar


if a¯=3i^-2j^+7k^, b¯ =5i^+j^-2k^and c¯=i^+j^-k^ then find a¯.(b¯×c¯)


Show that the four points A, B, C and D with position vectors 4i^+5j^+k^, -j^-k^, 3i^+9j^+4k^ and 4(-i^+j^+k^) respectively are coplanar


Find the volume of a parallelopiped whose edges are represented by the vectors:

a =2i^-3j^-4k^, b =i^+2j^-k^ and c=3i^+ j^+ 2k^


Evaluate the following:

[2i^j^ k^]+[i^k^j^]+[k^j^2i^]


Find [abc] , when a=2i^3j^,b=i^+j^k^ and c=3i^k^


Show of the following triad of vector is coplanar:

a=i^+2j^k^,b=3i^+2j^+7k^,c=5i^+6j^+5k^


a,b and c  are the position vectors of points A, B and C respectively, prove that: a×b+b×c+c×ais a vector perpendicular to the plane of triangle ABC.

Find λ for which the points A (3, 2, 1), B (4, λ, 5), C (4, 2, −2) and D (6, 5, −1) are coplanar.


Write the value of [i^+j^ j^+k^ k^+i^].


Find the values of 'a' for which the vectors

α=i^+2j^+k^,β=ai^+j^+2k^ and γ=i^+2j^+ak^ are coplanar.


If a,b  are non-collinear vectors, then find the value of[abi^]i^+[abj^]j^+[abk^]k^.


For any two vectors a and b of magnitudes 3 and 4 respectively, write the value of [aba×b]+(ab)2.


If [3a+7bcd]=λ[acd]+μ[bcd], then find the value of λ + μ.


If a,b,c are non-coplanar vectors, then find the value of a(b×c)(c×a)b+b(a×c)c(a×b).


If a lies in the plane of vectors b and c, then which of the following is correct?


For any three vectors a,b,c  the expression (ab).{(bc)×(ca)}  equals


[aba×b]+(a.b)2=


If a,b,c are three non-coplanar vectors, then (a+b+c).[(a+b)×(a+c)] equals


Determine where a¯ and b¯ are orthogonal, parallel or neithe:

a¯=4i^-j^+6k^ , b¯=5i^-2j^+4k^


If a=i^-2j^+3k^,b=2i^+j^-2k^,c=3i^+2j^+k^, find a(b×c)


If a,b,c are three non-coplanar vectors represented by concurrent edges of a parallelepiped of volume 4 cubic units, find the value of (a+b)(b×c)+(b+c)(c×a)+(c+a)(a×b)


The volume of tetrahedron whose vertices are A(3, 7, 4), B(5, -2, 3), C(-4, 5, 6), D(1, 2, 3) is ______.


If the scalar triple product of the vectors -3i^+7j^-3k^,3i^-7j^+λk^and7i^-5j^-5j^ is 272 then λ = ______.


Prove that the volume of a tetrahedron with coterminus edges a¯,b¯ and c¯ is 16[a¯b¯c¯].

Hence, find the volume of tetrahedron whose coterminus edges are a¯=i^+2j^+3k^,b¯=-i^+j^+2k^ and c¯=2i^+j^+4k^.


Determine whether a¯ and b¯ are orthogonal, parallel or neither.

a¯=-35i^+12j^+13k^,b¯=5i^+4j^+3k^


Determine whether a¯andb¯ are orthogonal, parallel or neither.

a¯=-35i^+12j^+13k^,b¯=5i^+4j^+3k^


Determine whether a¯andb¯ are orthogonal, parallel or neither.

a¯=-35i^+12j^+13k^,b¯=5i^+4j^+3k^


Determine whether a¯andb¯ is orthogonal, parallel or neither.

a¯=-35i^+12j^+13k^,b¯=5i^+4j^+3k^


If u=i^-2j^+k^,r¯=3i^+k^andw=j^,k^  are given vectors, then find [u¯+w¯].[(w¯×r¯)×(r¯×w¯)]


Determine whether a¯andb¯ are orthogonal, parallel or neither.

a¯=-35i^+12j^+13k^, b¯=5i^+4j^+3k^


Find the volume of a tetrahedron whose vertices are A(−1, 2, 3) B(3, −2, 1), C(2, 1, 3) and D(−1, −2, 4). 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.