Advertisements
Advertisements
Question
Solution
We know that if any vector is perpendicular to all three sides of ∆ ABC, it must be perpendicular to the plane of ∆ ABC .
Now,
\[ \overrightarrow{AB} = \vec{b} - \vec{a} , \overrightarrow{BC} = \vec{c} - \vec{b} , \overrightarrow{CA} = \vec{a} - \vec{c} \left( Position vectors of A, B and C are \vec{a} , \vec{b} , \vec{c} \right)\]
We have
\[ \overrightarrow{AB} . ( \vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a} )\]
\[ = \left( \vec{b} - \vec{a} \right) . \left( \vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a} \right) \]
\[ = \vec{b} . \left( \vec{a} \times \vec{b} \right) + \vec{b} . \left( \vec{b} \times \vec{c} \right) + \vec{b} . \left( \vec{c} \times \vec{a} \right) - \vec{a} . \left( \vec{a} \times \vec{b} \right) - \vec{a} . \left( \vec{b} \times \vec{c} \right) - \vec{a} . \left( \vec{c} \times \vec{a} \right) \left( By distributive law \right)\]
\[ = \left[ \vec{b} \vec{a} \vec{b} \right] + \left[ \vec{b} \vec{b} \vec{c} \right] + \left[ \vec{b} \vec{c} \vec{a} \right] - \left[ \vec{a} \vec{a} \vec{b} \right] - \left[ \vec{a} \vec{b} \vec{c} \right] - \left[ \vec{a} \vec{c} \vec{a} \right]\]
\[ = 0 + 0 + \left[ \vec{b} \vec{c} \vec{a} \right] - 0 - \left[ \vec{a} \vec{b} \vec{c} \right] - 0\]
\[ = 0 \left( \because \left[ \vec{b} \vec{c} \vec{a} \right] = \left[ \vec{a} \vec{b} \vec{c} \right] \right) \]
\[ \overrightarrow{BC} . ( \vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a} )\]
\[ = \left( \vec{c} - \vec{b} \right) . \left( \vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a} \right) \]
\[ = \vec{c} . \left( \vec{a} \times \vec{b} \right) + \vec{c} . \left( \vec{b} \times \vec{c} \right) + \vec{c} . \left( \vec{c} \times \vec{a} \right) - \vec{b} . \left( \vec{a} \times \vec{b} \right) - \vec{b} . \left( \vec{b} \times \vec{c} \right) - \vec{b} . \left( \vec{c} \times \vec{a} \right) \left( By distributive law \right)\]
\[ = \left[ \vec{c} \vec{a} \vec{b} \right] + \left[ \vec{c} \vec{b} \vec{c} \right] + \left[ \vec{c} \vec{c} \vec{a} \right] - \left[ \vec{b} a^\to \vec{b} \right] - \left[ \vec{b} \vec{b} \vec{c} \right] - \left[ \vec{b} \vec{c} \vec{a} \right]\]
\[ = \left[ \vec{c} \vec{a} \vec{b} \right] + 0 + 0 - 0 - 0 - \left[ \vec{b} \vec{c} \vec{a} \right]\]
\[ = 0 \left( \because \left[ \vec{c} \vec{a} \vec{b} \right] = \left[ \vec{b} \vec{c} \vec{a} \right] \right) \]
Similarly,
\[ \overrightarrow{CA} . ( \vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a} )\]
\[ = \left( \vec{a} - \vec{c} \right) . \left( \vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a} \right) \]
\[ = \vec{a} . \left( \vec{a} \times \vec{b} \right) + \vec{a} . \left( \vec{b} \times \vec{c} \right) + \vec{a} \left( \vec{c} \times \vec{a} \right) - \vec{c} . \left( \vec{a} \times \vec{b} \right) - \vec{c} . \left( \vec{b} \times \vec{c} \right) - \vec{c} . \left( \vec{c} \times \vec{a} \right) \left( By distributive law \right)\]
\[ = \left[ \vec{a} \vec{a} \vec{b} \right] + \left[ \vec{a} \vec{b} \vec{c} \right] + \left[ \vec{a} \vec{c} \vec{a} \right] - \left[ \vec{c} \vec{a} \vec{b} \right] - \left[ \vec{c} \vec{b} \vec{c} \right] - \left[ \vec{c} \vec{c} \vec{a} \right]\]
\[ = 0 + \left[ \vec{a} \vec{b} \vec{c} \right] + 0 - \left[ \vec{c} \vec{a} \vec{b} \right] - 0 - 0\]
\[ = 0 \left( \because \left[ \vec{c} \vec{a} \vec{b} \right] = \left[ \vec{a} \vec{b} \vec{c} \right] \right) \]
\[\text {Hence, vector } \vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a}\text { is perpendicular to all sides of ∆ ABC and also perpendicular to the plane of ∆ ABC } .\]
APPEARS IN
RELATED QUESTIONS
Prove that, for any three vector `veca,vecb,vecc [vec a+vec b,vec b+vec c,vecc+veca]=2[veca vecb vecc]`
Show that the four points A(4, 5, 1), B(0, –1, –1), C(3, 9, 4) and D(–4, 4, 4) are coplanar.
Find the value of λ, if four points with position vectors `3hati + 6hatj+9hatk`, `hati + 2hatj + 3hatk`,`2hati + 3hatj + hatk` and `4hati + 6hatj + lambdahatk` are coplanar.
Show that the four points A, B, C and D with position vectors `4hati + 5hatj + hatk`, `-hatj-hatk`, `3hati + 9hatj + 4hatk` and `4(-hati + hatj + hatk)` respectively are coplanar
Give a condition that three vectors \[\vec{a}\], \[\vec{b}\] and \[\vec{c}\] form the three sides of a triangle. What are the other possibilities?
Evaluate the following:
\[\left[\hat{i}\hat{j}\hat{k} \right] + \left[ \hat{j}\hat{k}\hat {i} \right] + \left[ \hat{k}\hat{i} \hat{j} \right]\]
Evaluate the following:
\[\left[ 2 \hat{i}\hat{ j}\ \hat{k}\right] + \left[\hat{i}\hat{ k}\hat {j} \right] + \left[\hat{ k}\hat{ j} 2\hat{ i} \right]\]
Find \[\left[ \vec{a} \vec{b} \vec{c} \right]\] , when \[\vec{a} =\hat{ i} - 2 \hat{j} + 3 \hat{k} , \vec{b} = 2 \hat{i} + \hat{j} - \hat{k}\text{ and } \vec{c} = \hat{j} + \hat{k}\]
Show of the following triad of vector is coplanar:
\[\vec{a} = - 4 \hat{i} - 6 \hat{j} - 2 \hat{k} , \vec{b} = -\hat{ i} + 4 \hat{j} + 3 \hat{k} , \vec{c} = - 8 \hat{i} - \hat{j} + 3 \hat{k}\]
Find the value of λ so that the following vector is coplanar:
\[\vec{a} = \hat{i} + 2\hat { j} - 3 \hat {k} , \vec{b} = 3 \hat{i} + \lambda \hat {j} + \hat {k} , \vec{c} = \hat {i} + 2 \hat {j} + 2 \hat {k}\]
Prove that: \[\left( \vec{a} - \vec{b} \right) \cdot \left\{ \left( \vec{b} - \vec{c} \right) \times \left( \vec{c} - \vec{a} \right) \right\} = 0\]
Find the volume of the parallelopiped with its edges represented by the vectors \[\hat {i} + \hat {j} , \hat {i} + 2 \hat {j} \text { and } \hat {i} + \hat {j} + \pi k .\]
If \[\left[ 3 \vec{a} + 7 \vec{b} \vec{c} \vec{d} \right] = \lambda\left[ \vec{a} \vec{c} \vec{d} \right] + \mu\left[ \vec{b} \vec{c} \vec{d} \right],\] then find the value of λ + μ.
The value of \[\left[ \vec{a} - \vec{b} , \vec{b} - \vec{c} , \vec{c} - \vec{a} \right], \text { where } \left| \vec{a} \right| = 1, \left| \vec{b} \right| = 5, \left| \vec{c} \right| = 3, \text { is }\]
If \[\vec{r} \cdot \vec{a} = \vec{r} \cdot \vec{b} = \vec{r} \cdot \vec{c} = 0\] for some non-zero vector \[\vec{r} ,\] then the value of \[\left[ \vec{a} \vec{b} \vec{c} \right],\] is
If \[\left[ 2 \vec{a} + 4 \vec{b} \vec{c} \vec{d} \right] = \lambda\left[ \vec{a} \vec{c} \vec{d} \right] + \mu\left[ \vec{b} \vec{c} \vec{d} \right],\] then λ + μ =
If \[\vec{a,} \vec{b,} \vec{c}\] are three non-coplanar vectors, then \[\left( \vec{a} + \vec{b} + \vec{c} \right) . \left[ \left( \vec{a} + \vec{b} \right) \times \left( \vec{a} + \vec{c} \right) \right]\] equals
\[\left( \vec{a} + 2 \vec{b} - \vec{c} \right) \cdot \left\{ \left( \vec{a} - \vec{b} \right) \times \left( \vec{a} - \vec{b} - \vec{c} \right) \right\}\] is equal to
Determine where `bar"a"` and `bar"b"` are orthogonal, parallel or neithe:
`bar"a" = - 9hat"i" + 6hat"j" + 15hat"k"` , `bar"b" = 6hat"i" - 4hat"j" - 10hat"k"`.
Prove by vector method, that the angle subtended on semicircle is a right angle.
If a vector has direction angles 45° and 60°, find the third direction angle.
If the vectors `3hat"i" + 5hat"k", 4hat"i" + 2hat"j" - 3hat"k"` and `3hat"i" + hat"j" + 4hat"k"` are the coterminus edges of the parallelopiped, then find the volume of the parallelopiped.
If `bar"u" = hat"i" - 2hat"j" + hat"k" , bar"v" = 3hat"i" + hat"k"` and `bar"w" = hat"j" - hat"k"` are given vectors, then find `(bar"u" + bar"w").[(bar"u" xx bar"v") xx (bar"v" xx bar"w")]`
Find the volume of the parallelepiped whose coterminous edges are represented by the vectors `- 6hat"i" + 14hat"j" + 10hat"k", 14hat"i" - 10hat"j" - 6hat"k"` and `2hat"i" + 4hat"j" - 2hat"k"`
Let `vec"a", vec"b", vec"c"` be three non-zero vectors such that `vec"c"` is a unit vector perpendicular to both `vec"a"` and `vec"b"`. If the angle between `vec"a"` and `vec"b"` is `pi/6`, show that `[(vec"a", vec"b", vec"c")]^2 = 1/4|vec"a"|^2|vec"b"|^2`
If the points having the position vectors `2hat"i" + hat"j" - hat"k", -hat"j", 4hat"i" + 4hat"k"` and `lambdahat"i" + hat"k"` lie on the same plane, then λ is equal to ______.
Let `bar"a", bar"b", bar"c"` be three vectors such that `bar"a" ≠ 0`, and `bar"a" xx bar"b" = 2bar"a" xx bar"c", |bar"a"| = |bar"c"| = 1, |bar"b"| = 4` and `|bar"b" xx bar"c"| = sqrt(15)`. If `bar"b" - 2bar"c" = lambdabar"a"`, then λ is equal to ______.
If θ is the angle between the unit vectors `bar"a"` and `bar"b"`, the `cos theta = theta/2` = ______.
If `veca = hati + hatj + hatk, veca.vecb` = 1 and `veca xx vecb = hatj - hatk`, then find `|vecb|`.
If `veca, vecb, vecc` are three non-coplanar vectors, then the value of `(veca.(vecb xx vecc))/((vecc xx veca).vecb) + (vecb.(veca xx vecc))/(vecc.(veca xx vecb))` is ______.
Determine whether `bara` and `barb` are orthogonal, parallel or neither.
`bara = - 3/5 hati + 1/2 hatj + 1/3 hatk, barb = 5hati + 4hatj + 3hatk`
Find the volume of the parallelopiped whose vertices are A (3, 2, −1), B (−2, 2, −3) C (3, 5, −2) and D (−2, 5, 4).
Determine whether `bara and barb` is orthogonal, parallel or neither.
`bara = -3/5hati + 1/2hatj + 1/3hatk, barb = 5hati + 4hatj + 3hatk`
If `u=hati -2hatj + hatk, barr=3hati + hatk and w=hatj, hatk` are given vectors, then find `[baru + barw]. [(barw xx barr)xx(barr xx barw)]`
Find the volume of a tetrahedron whose vertices are A(−1, 2, 3) B(3, −2, 1), C (2, 1, 3) and D(−1, −2, 4).
Determine whether `\bb(bara and barb)` are orthogonal, parallel or neither.
`bara = -3/5 hati + 1/2 hatj + 1/3 hatk, barb = 5hati + 4hatj + 3hatk `