Advertisements
Advertisements
Question
The value of \[\left[ \vec{a} - \vec{b} , \vec{b} - \vec{c} , \vec{c} - \vec{a} \right], \text { where } \left| \vec{a} \right| = 1, \left| \vec{b} \right| = 5, \left| \vec{c} \right| = 3, \text { is }\]
Options
0
1
6
none of these
Solution
We have
\[\left[ \vec{a} - \vec{b} , \vec{b} - \vec{c} , \vec{c} - \vec{a} \right]\]
\[ = \left( \left( \vec{a} - \vec{b} \right) \times \left( \vec{b} - \vec{c} \right) \right) . \left( \vec{c} - \vec{a} \right) \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \left( \text { By definition of scalar triple product } \right)\]
\[ = \left( \left( \vec{a} - \vec{b} \right) \times \vec{b} - \left( \vec{a} - \vec{b} \right) \times \vec{c} \right) . \left( \vec{c} - \vec{a} \right) \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \]
\[ = \left( \vec{a} \times \vec{b} - \vec{b} \times \vec{b} - \vec{a} \times \vec{c} + \vec{b} \times \vec{c} \right) . \left( \vec{c} - \vec{a} \right) \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \]
\[ = \left( \vec{a} \times \vec{b} - 0 - \vec{a} \times \vec{c} + \vec{b} \times \vec{c} \right) . \left( \vec{c} - \vec{a} \right) \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \]
\[ = \left( \vec{a} \times \vec{b} \right) . \left( \vec{c} - \vec{a} \right) \hspace{0.167em} - \left( \vec{a} \times \vec{c} \right) . \left( \vec{c} - \vec{a} \right) \hspace{0.167em} + \left( \vec{b} \times \vec{c} \right) . \left( \vec{c} - \vec{a} \right) \hspace{0.167em} \]
\[ = \left( \vec{a} \times \vec{b} \right) . \vec{c} - \left( \vec{a} \times \vec{b} \right) . \vec{a} - \left( \vec{a} \times \vec{c} \right) . \vec{c} + \left( \vec{a} \times \vec{c} \right) . \vec{a} + \left( \vec{b} \times \vec{c} \right) . \vec{c} - \left( \vec{b} \times \vec{c} \right) . \vec{a} \]
\[ = \left[ \vec{a} \vec{b} \vec{c} \right] - \left[ \vec{a} \vec{b} \vec{a} \right] - \left[ \vec{a} \vec{c} \vec{c} \right] + \left[ \vec{a} \vec{c} \vec{a} \right] + \left[ \vec{b} \vec{c} \vec{c} \right] - \left[ \vec{b} \vec{c} \vec{a} \right]\]
\[ = \left[ \vec{a} \vec{b} \vec{c} \right] - 0 - 0 + 0 + 0 - \left[ \vec{a} \vec{b} \vec{c} \right] \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \left( \because \left[ \vec{a} \vec{b} \vec{c} \right] = \left[ \vec{b} \vec{c} \vec{a} \right] = \left[ \vec{c} \vec{a} \vec{b} \right] \right)\]
\[ = 0 \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \]
APPEARS IN
RELATED QUESTIONS
Let `veca = hati + hatj + hatk = hati` and `vecc = c_1veci + c_2hatj + c_3hatk` then
1) Let `c_1 = 1` and `c_2 = 2`, find `c_3` which makes `veca, vecb "and" vecc`coplanar
2) if `c_2 = -1` and `c_3 = 1`, show that no value of `c_1`can make `veca, vecb and vecc` coplanar
Show that the four points A, B, C and D with position vectors `4hati + 5hatj + hatk`, `-hatj-hatk`, `3hati + 9hatj + 4hatk` and `4(-hati + hatj + hatk)` respectively are coplanar
Find the volume of a parallelopiped whose edges are represented by the vectors:
`vec a = 2 hat i - 3 hat j - 4 hat k`, `vec b = hat i + 2 hat j - hat k` and `vec c = 3 hat i + hat j + 2 hatk`
Find the volume of the parallelopiped whose coterminus edges are given by vectors `2hati+5hatj-4hatk, 5hati+7hatj+5hatk and 4hati+5hatj-2hatk`
Evaluate the following:
\[\left[\hat{i}\hat{j}\hat{k} \right] + \left[ \hat{j}\hat{k}\hat {i} \right] + \left[ \hat{k}\hat{i} \hat{j} \right]\]
Find the volume of the parallelopiped whose coterminous edges are represented by the vector:
\[\vec{a} = 2 \hat{i} + 3 \hat{j} + 4 \hat{k} , \vec{b} =\hat{ i} + 2 \hat{j} - \hat{k} , \vec{c} = 3 \hat{i} - \hat{j} + 2 \hat{k}\]
Find the volume of the parallelopiped whose coterminous edges are represented by the vector:
\[\vec{a} = 2 \hat{i} - 3 \hat{j} + 4 \hat{k} , \vec{b} = \hat{i} + 2 \hat{j} - \hat{k} , \vec{c} = 3 \hat{i} - \hat{j} - 2 \hat{k}\]
Show of the following triad of vector is coplanar:
\[\vec{a} = \hat {i} + 2 \hat{j} - \hat {k} , \vec{b} = 3 \hat {i} + 2 \hat{j} + 7 \hat {k} , \vec{c} = 5 \hat {i} + 6 \hat { j} + 5 \hat {k}\]
Write the value of \[\left[ 2 \hat { i } \ 3 \hat { j }\ 4 \hat { k } \right] .\]
If the vectors (sec2 A) \[\hat {i} + \hat {j} + \hat {k} , \hat {i} + \left( \sec^2 B \right) \hat {j} + \hat {k} , \hat {i} + \hat {j} + \left( \sec^2 C \right) \hat {k}\] are coplanar, then find the value of cosec2 A + cosec2 B + cosec2 C.
For any two vectors \[\vec{a} \text { and } \vec{b}\] of magnitudes 3 and 4 respectively, write the value of \[\left[ \vec{a} \vec{b} \vec{a} \times \vec{b} \right] + \left( \vec{a} \cdot \vec{b} \right)^2 .\]
Find \[\vec{a} . \left( \vec{b} \times \vec{c} \right)\], if \[\vec{a} = 2 \hat {i} + \hat {j} + 3 \hat {k} , \vec{b} = - \hat {i} + 2 \hat {j} + \hat {k}\] and \[\vec{c} = 3 \hat { i} + \hat {j} + 2 \hat {k}\].
For any three vectors \[\vec{a,} \vec{b,} \vec{c}\] the expression \[\left( \vec{a} - \vec{b} \right) . \left\{ \left( \vec{b} - \vec{c} \right) \times \left( \vec{c} - \vec{a} \right) \right\}\] equals
Let \[\vec{a} = a_1 \hat { i }+ a_2 \hat {j} + a_3 \hat {k} , \vec{b} = b_1 \hat {i} + b_2 \hat { j } + b_3 \hat { k} \text { and } \vec{c} = c_1 \hat { i } + c_2 \hat{j } + c_3\text { k }\] be three non-zero vectors such that \[\vec{c}\] is a unit vector perpendicular to both \[\vec{a} \text { and } \vec{b}\]. If the angle between \[\vec{a} \text { and } \vec{b}\] is \[\frac{\pi}{6},\] , then
\[\begin{vmatrix}a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3\end{vmatrix}^2\] is equal to
\[\left( \vec{a} + \vec{b} \right) \cdot \left( \vec{b} + \vec{c} \right) \times \left( \vec{a} + \vec{b} + \vec{c} \right) =\]
\[\left( \vec{a} + 2 \vec{b} - \vec{c} \right) \cdot \left\{ \left( \vec{a} - \vec{b} \right) \times \left( \vec{a} - \vec{b} - \vec{c} \right) \right\}\] is equal to
Find the value of p, if the vectors `hat"i" - 2hat"j" + hat"k", 2hat"i" -5hat"j"+"p" hat "k" , 5hat"i" -9hat"j" + 4 hat"k"` are coplanar.
Show that the vectors `hat (i) - 2 hat(j) + 3 hat (k), - 2 hat(i) + 3 hat(j) - 4 hat(k) " and " hat(i) - 3 hat(j) + 5 hat(k) ` are coplanar.
Determine where `bar"a"` and `bar"b"` are orthogonal, parallel or neithe:
`bar"a" = - 9hat"i" + 6hat"j" + 15hat"k"` , `bar"b" = 6hat"i" - 4hat"j" - 10hat"k"`.
Prove by vector method, that the angle subtended on semicircle is a right angle.
Find the angle between the lines whose direction cosines l, m, n satisfy the equations 5l + m + 3n = 0 and 5mn − 2nl + 6lm = 0.
If the vectors `- 3hat"i" + 4hat"j" - 2hat"k" , hat"i" + 2hat"k"` and `hat"i" - "p"hat"j"` are coplanar, then find the value of p.
If `bar"u" = hat"i" - 2hat"j" + hat"k" , bar"v" = 3hat"i" + hat"k"` and `bar"w" = hat"j" - hat"k"` are given vectors, then find `(bar"u" + bar"w").[(bar"u" xx bar"v") xx (bar"v" xx bar"w")]`
The volume of the parallelepiped whose coterminus edges are `7hat"i" + lambdahat"j" - 3hat"k", hat"i" + 2hat"j" - hat"k", -3hat"i" + 7hat"j" + 5hat"k"` is 90 cubic units. Find the value of λ
Determine whether the three vectors `2hat"i" + 3hat"j" + hat"k", hat"i" - 2hat"j" + 2hat"k"` and `3hat"i" + hat"j" + 3hat"k"` are coplanar
If `vec"a" = hat"i" - hat"k", vec"b" = xhat"i" + hat"j" + (1 - x)hat"k", vec"c" = yhat"i" + xhat"j" + (1 + x - y)hat"k"`, show that `[(vec"a", vec"b", vec"c")]` depends on neither x nor y
The volume of tetrahedron whose vertices are A(3, 7, 4), B(5, -2, 3), C(-4, 5, 6), D(1, 2, 3) is ______.
If the volume of tetrahedron whose vertices are A(0, 1, 2), B(2, -3, 0), C(1, 0, 2) and D(-2,-3,lambda) is `7/3` cu.units, then the value of λ is ______.
Let `bar"a", bar"b", bar"c"` be three vectors such that `bar"a" ≠ 0`, and `bar"a" xx bar"b" = 2bar"a" xx bar"c", |bar"a"| = |bar"c"| = 1, |bar"b"| = 4` and `|bar"b" xx bar"c"| = sqrt(15)`. If `bar"b" - 2bar"c" = lambdabar"a"`, then λ is equal to ______.
If the direction cosines of a line are `(1/c, 1/c, 1/c)` then ______.
If `veca, vecb, vecc` are three non-coplanar vectors, then the value of `(veca.(vecb xx vecc))/((vecc xx veca).vecb) + (vecb.(veca xx vecc))/(vecc.(veca xx vecb))` is ______.
Let v = `2hati + hatj - hatk` and w = `hati + 3hatk`. If u is a unit vector, then maximum value of scalar triple product [u v w] is ______.
Prove that the volume of a tetrahedron with coterminus edges `overlinea, overlineb` and `overlinec` is `1/6[(overlinea, overlineb, overlinec)]`.
Hence, find the volume of tetrahedron whose coterminus edges are `overlinea = hati + 2hatj + 3hatk, overlineb = -hati + hatj + 2hatk` and `overlinec = 2hati + hatj + 4hatk`.
Determine whether `bara and barb` are orthogonal, parallel or neither.
`bara = - 3/5 hati+ 1/2 hatj + 1/3 hatk , barb= 5hati + 4hatj + 3hatk`
If `2hati + 3hatj, hati + hatj + hatk` and `λhati + 4hatj + 2hatk` taken in order are coterminous edges of a parallelopiped of volume 2 cu. units, then find the value of λ.
If `bar"u" = hat"i" - 2hat"j" + hat"k" , bar"v" = 3hat"i" + hat"k"` and `bar"w" = hat"j" - hat"k"` are given vectors, then find `[bar"u" xx bar"v" bar"u" xx bar"w" bar"v" xx bar"w"]`
Determine whether `bara and barb` is orthogonal, parallel or neither.
`bara = -3/5hati + 1/2hatj + 1/3hatk, barb = 5hati + 4hatj + 3hatk`
Determine whether `\bb(bara and barb)` are orthogonal, parallel or neither.
`bara = -3/5 hati + 1/2 hatj + 1/3 hatk, barb = 5hati + 4hatj + 3hatk `
If `baru = hati - 2hatj + hatk, barv = 3hati + hatk "and" barw = hatj - hatk` are given vectors, then find `[baru + barw]·[(baru xx barv)xx(barv xx barw)]`