Advertisements
Advertisements
Question
Find the volume of the parallelopiped whose coterminous edges are represented by the vector:
\[\vec{a} = 2 \hat{i} + 3 \hat{j} + 4 \hat{k} , \vec{b} =\hat{ i} + 2 \hat{j} - \hat{k} , \vec{c} = 3 \hat{i} - \hat{j} + 2 \hat{k}\]
Solution
Given:
\[ \vec{a} = 2 \hat{i} + 3 \hat{j} + 4 \hat{k} \]
\[ \vec{b} =\hat{ i} + 2 \hat{j} - \hat{k} \]
\[ \vec{c} = 3 \hat{i} - \hat{j} + 2 \hat{k} \]
\[\text{We know that the volume of a parallelopiped whose three adjacent edges are }\vec{a} , \vec{b} , \vec{c}\text{ is equal to } \left| \left[ \vec{a} \vec{b} \vec{c} \right] \right| . \]
Here,
\[\left[ \vec{a} \vec{b} \vec{c} \right] = \begin{vmatrix}2 & 3 & 4 \\ 1 & 2 & - 1 \\ 3 & - 1 & 2\end{vmatrix} = 2 \left( 4 - 1 \right) - 3\left( 2 + 3 \right) + 4\left( - 1 - 6 \right) = - 37\]
\[\text{Volume of the parallelopiped }= \left| \left[ \vec{a} \vec{b} \vec{c} \right] \right| = \left| - 37 \right| = 37 \text{cubic units }\]
APPEARS IN
RELATED QUESTIONS
Prove that the volume of a parallelopiped with coterminal edges as ` bara ,bar b , barc `
Hence find the volume of the parallelopiped with coterminal edges `bar i+barj, barj+bark `
Prove that, for any three vector `veca,vecb,vecc [vec a+vec b,vec b+vec c,vecc+veca]=2[veca vecb vecc]`
Find the volume of the parallelopiped whose coterminus edges are given by vectors `2hati+5hatj-4hatk, 5hati+7hatj+5hatk and 4hati+5hatj-2hatk`
Evaluate the following:
\[\left[ 2 \hat{i}\hat{ j}\ \hat{k}\right] + \left[\hat{i}\hat{ k}\hat {j} \right] + \left[\hat{ k}\hat{ j} 2\hat{ i} \right]\]
Find \[\left[ \vec{a} \vec{b} \vec{c} \right]\] , when \[\vec{a} = 2 \hat{i} - 3 \hat{j} , \vec{b} = \hat{i} + \hat{j} - \hat{k} \text{ and } \vec{c} = 3 \hat{i} - \hat{k}\]
Show of the following triad of vector is coplanar:
\[\vec{a} = \hat {i} + 2 \hat{j} - \hat {k} , \vec{b} = 3 \hat {i} + 2 \hat{j} + 7 \hat {k} , \vec{c} = 5 \hat {i} + 6 \hat { j} + 5 \hat {k}\]
Find the value of λ so that the following vector is coplanar:
\[\vec{a} = \hat {i} + 3 \hat {j} , \vec{b} = 5 \hat {k} , \vec{c} = \lambda \hat {i} - \hat {j}\]
Show that four points whose position vectors are
\[6 \hat { i} - 7 \hat {j} , 16 \hat { i} - 19 \hat { j} - 4 \hat {k} , 3 \hat {i} - 6 \hat {k} , 2 \hat { i} - 5 \hat {j}+ 10 \hat {k}\]
Find λ for which the points A (3, 2, 1), B (4, λ, 5), C (4, 2, −2) and D (6, 5, −1) are coplanar.
Write the value of \[\left[ 2 \hat { i } \ 3 \hat { j }\ 4 \hat { k } \right] .\]
Write the value of \[\left[ \hat {i} + \hat {j} \ \hat {j} + \hat {k} \ \hat {k} + \hat {i} \right] .\]
Find the values of 'a' for which the vectors
\[\vec{\alpha} = \hat {i} + 2 \hat {j} + \hat {k} , \vec{\beta} = a \hat {i} + \hat {j} + 2 \hat {k} \text { and } \vec{\gamma} = \hat {i} + 2 \hat {j} + a \hat { k }\] are coplanar.
Find the volume of the parallelopiped with its edges represented by the vectors \[\hat {i} + \hat {j} , \hat {i} + 2 \hat {j} \text { and } \hat {i} + \hat {j} + \pi k .\]
If \[\vec{a,} \vec{b,} \vec{c}\] are non-coplanar vectors, then find the value of \[\frac{\vec{a} \cdot \left( \vec{b} \times \vec{c} \right)}{\left( \vec{c} \times \vec{a} \right) \cdot \vec{b}} + \frac{\vec{b} \cdot \left( \vec{a} \times \vec{c} \right)}{\vec{c} \cdot \left( \vec{a} \times \vec{b} \right)}\].
Find \[\vec{a} . \left( \vec{b} \times \vec{c} \right)\], if \[\vec{a} = 2 \hat {i} + \hat {j} + 3 \hat {k} , \vec{b} = - \hat {i} + 2 \hat {j} + \hat {k}\] and \[\vec{c} = 3 \hat { i} + \hat {j} + 2 \hat {k}\].
The value of \[\left[ \vec{a} - \vec{b} , \vec{b} - \vec{c} , \vec{c} - \vec{a} \right], \text { where } \left| \vec{a} \right| = 1, \left| \vec{b} \right| = 5, \left| \vec{c} \right| = 3, \text { is }\]
For non-zero vectors \[\vec{a,} \vec{b} \text { and }\vec{c}\] the relation \[\left| \left( \vec{a} \times \vec{b} \right) \cdot \vec{c} \right| = \left| \vec{a} \right| \left| \vec{b} \right| \left| \vec{c} \right|\] holds good, if
\[\left( \vec{a} + 2 \vec{b} - \vec{c} \right) \cdot \left\{ \left( \vec{a} - \vec{b} \right) \times \left( \vec{a} - \vec{b} - \vec{c} \right) \right\}\] is equal to
Find the volume of the parallelopiped, if the coterminus edges are given by the vectors `2hat"i" + 5hat"j" -4 hat"k", 5hat"i" +7hat"j"+5 hat "k" , 4hat"i" +5hat"j" - 2 hat"k"`.
Determine where `bar"a"` and `bar"b"` are orthogonal, parallel or neithe:
`bar"a" = - 9hat"i" + 6hat"j" + 15hat"k"` , `bar"b" = 6hat"i" - 4hat"j" - 10hat"k"`.
Determine where `bb(bara)` and `bb(barb)` are orthogonal, parallel or neither.
`bara = -3/5hati + 1/2hatj + 1/3hatk , barb = 5hati + 4hatj + 3hatk`
If a vector has direction angles 45° and 60°, find the third direction angle.
If the vectors `3hat"i" + 5hat"k", 4hat"i" + 2hat"j" - 3hat"k"` and `3hat"i" + hat"j" + 4hat"k"` are the coterminus edges of the parallelopiped, then find the volume of the parallelopiped.
Find the volume of the parallelepiped whose coterminous edges are represented by the vectors `- 6hat"i" + 14hat"j" + 10hat"k", 14hat"i" - 10hat"j" - 6hat"k"` and `2hat"i" + 4hat"j" - 2hat"k"`
Ler `vec"a" = hat"i" + hat"j" + hat"k", vec"b" = hat"i"` and `vec"c" = "c"_1hat"i" + "c"_2hat"j" + "c"_3hat"k"`. If c1 = 1 and c2 = 2. find c3 such that `vec"a", vec"b"` and `vec"c"` are coplanar
The volume of tetrahedron whose vertices are A(3, 7, 4), B(5, -2, 3), C(-4, 5, 6), D(1, 2, 3) is ______.
Let `bar"a", bar"b", bar"c"` be three vectors such that `bar"a" ≠ 0`, and `bar"a" xx bar"b" = 2bar"a" xx bar"c", |bar"a"| = |bar"c"| = 1, |bar"b"| = 4` and `|bar"b" xx bar"c"| = sqrt(15)`. If `bar"b" - 2bar"c" = lambdabar"a"`, then λ is equal to ______.
If θ is the angle between the unit vectors `bar"a"` and `bar"b"`, the `cos theta = theta/2` = ______.
If the direction cosines of a line are `(1/c, 1/c, 1/c)` then ______.
Prove that the volume of a tetrahedron with coterminus edges `overlinea, overlineb` and `overlinec` is `1/6[(overlinea, overlineb, overlinec)]`.
Hence, find the volume of tetrahedron whose coterminus edges are `overlinea = hati + 2hatj + 3hatk, overlineb = -hati + hatj + 2hatk` and `overlinec = 2hati + hatj + 4hatk`.
Determine whether `bara and barb` are orthogonal, parallel or neither.
`bara = - 3/5 hati+ 1/2 hatj + 1/3 hatk , barb= 5hati + 4hatj + 3hatk`
If `2hati + 3hatj, hati + hatj + hatk` and `λhati + 4hatj + 2hatk` taken in order are coterminous edges of a parallelopiped of volume 2 cu. units, then find the value of λ.
If `bar"u" = hat"i" - 2hat"j" + hat"k" , bar"v" = 3hat"i" + hat"k"` and `bar"w" = hat"j" - hat"k"` are given vectors, then find `[bar"u" xx bar"v" bar"u" xx bar"w" bar"v" xx bar"w"]`
Determine whether `bara and barb` are orthogonal, parallel or neither.
`bara = -3/5hati + 1/2hatj +1/3 hatk, barb = 5hati + 4hatj +3hatk`
Find the volume of a tetrahedron whose vertices are A(−1, 2, 3) B(3, −2, 1), C (2, 1, 3) and D(−1, −2, 4).
If `baru = hati - 2hatj + hatk, barv = 3hati + hatk "and" barw = hatj - hatk` are given vectors, then find `[baru + barw]·[(baru xx barv)xx(barv xx barw)]`