English
Tamil Nadu Board of Secondary EducationHSC Science Class 12

Ler aijkbia→=i^+j^+k^,b→=i^ and ccicjckc→=c1i^+c2j^+c3k^. If c1 = 1 and c2 = 2. find c3 such that aba→,b→ and cc→ are coplanar - Mathematics

Advertisements
Advertisements

Question

Ler `vec"a" = hat"i" + hat"j" + hat"k", vec"b" = hat"i"` and `vec"c" = "c"_1hat"i" + "c"_2hat"j" + "c"_3hat"k"`. If c1 = 1 and c2 = 2. find c3 such that `vec"a", vec"b"` and `vec"c"` are coplanar

Sum

Solution

Given

`vec"a" = vec"i" + vec"j" + vec"k"`

`vec"b" = vec"i"`

`vec"c" = "c"_1vec"i" + "c"_2vec"j" + "c"_3vec"k"` are coplanar

But c1 = 1 and c2 = 2

So `vec"c" = vec"i" + 2vec"j" + "c"_3vec"k"`

We know that `[vec"a"  vec"b"  vec"c"]` = 0

`|(1, 1, 1),(1, 0, 0),(1, 2, "c"_3)|` = 0

`1[0] - 1["c"_3] + 1[2]` = 0

⇒ `- "c"_3 + 2` = 0

⇒ c3 = 2

shaalaa.com
  Is there an error in this question or solution?
Chapter 6: Applications of Vector Algebra - Exercise 6.2 [Page 237]

APPEARS IN

Samacheer Kalvi Mathematics - Volume 1 and 2 [English] Class 12 TN Board
Chapter 6 Applications of Vector Algebra
Exercise 6.2 | Q 7 | Page 237

RELATED QUESTIONS

Find the volume of the parallelopiped whose coterminus edges are given by vectors

`2hati+3hatj-4hatk, 5hati+7hatj+5hatk and 4hati+5hatj-2hatk`


Find the volume of a tetrahedron whose vertices are A(−1, 2, 3), B(3, −2, 1), C(2, 1, 3) and D(−1, −2, 4).


Find the volume of a parallelopiped whose edges are represented by the vectors:

`vec a = 2 hat i - 3 hat j - 4 hat k`, `vec b  = hat i + 2 hat j - hat k` and `vec c = 3 hat i +  hat j +  2 hatk`


Find the volume of the parallelopiped whose coterminous edges are represented by the vector:

\[\vec{a} = 2 \hat{i} + 3 \hat{j} + 4 \hat{k} , \vec{b} =\hat{ i} + 2 \hat{j} - \hat{k} , \vec{c} = 3 \hat{i} - \hat{j} + 2 \hat{k}\]


Find the value of λ so that the following vector is coplanar:

\[\vec{a} = 2 \hat{i} - \hat {j} + \hat {k} , \vec{b} = \hat {i} + 2 \hat {j} - 3 \hat {k} , \vec{c} = \lambda \hat {i} + \lambda \hat {j} + 5 \hat {k}\]


Find the value of λ so that the following vector is coplanar:

\[\vec{a} = \hat{i} + 2\hat { j} - 3 \hat {k} , \vec{b} = 3 \hat{i} + \lambda \hat {j} + \hat {k} , \vec{c} = \hat {i} + 2 \hat {j} + 2 \hat {k}\]


Prove that: \[\left( \vec{a} - \vec{b} \right) \cdot \left\{ \left( \vec{b} - \vec{c} \right) \times \left( \vec{c} - \vec{a} \right) \right\} = 0\]


If the vectors (sec2 A) \[\hat {i} + \hat {j} + \hat {k} , \hat {i} + \left( \sec^2 B \right) \hat {j} + \hat {k} , \hat {i} + \hat {j} + \left( \sec^2 C \right) \hat {k}\] are coplanar, then find the value of cosec2 A + cosec2 B + cosec2 C.


Let \[\vec{a} = a_1 \hat { i }+ a_2 \hat {j} + a_3 \hat {k} , \vec{b} = b_1 \hat {i} + b_2 \hat { j } + b_3 \hat { k} \text { and } \vec{c} = c_1 \hat { i } + c_2 \hat{j } + c_3\text {  k }\] be three non-zero vectors such that \[\vec{c}\] is a unit vector perpendicular to both \[\vec{a} \text { and } \vec{b}\]. If the angle between \[\vec{a} \text { and } \vec{b}\] is \[\frac{\pi}{6},\] , then

\[\begin{vmatrix}a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3\end{vmatrix}^2\] is equal to


If \[\left[ 2 \vec{a} + 4 \vec{b} \vec{c} \vec{d} \right] = \lambda\left[ \vec{a} \vec{c} \vec{d} \right] + \mu\left[ \vec{b} \vec{c} \vec{d} \right],\]  then λ + μ =


Find the value of p, if the vectors `hat"i" - 2hat"j" + hat"k", 2hat"i" -5hat"j"+"p" hat "k" , 5hat"i" -9hat"j" + 4 hat"k"` are coplanar.


Determine where `bar"a"` and `bar"b"` are orthogonal, parallel or neithe:

`bar"a" = - 9hat"i" + 6hat"j" + 15hat"k"` , `bar"b" = 6hat"i" - 4hat"j" - 10hat"k"`.


If a line has the direction ratios 4, −12, 18, then find its direction cosines


If `bar"u" = hat"i" - 2hat"j" + hat"k" , bar"v" = 3hat"i" + hat"k"` and `bar"w" = hat"j" - hat"k"` are given vectors, then find `(bar"u" + bar"w").[(bar"u" xx bar"v") xx (bar"v" xx bar"w")]`


Using properties of scalar triple product, prove that `[(bar"a" + bar"b",  bar"b" + bar"c",  bar"c" + bar"a")] = 2[(bar"a",  bar"b",  bar"c")]`.


Find the volume of the parallelepiped whose coterminous edges are represented by the vectors `- 6hat"i" + 14hat"j" + 10hat"k", 14hat"i" - 10hat"j" - 6hat"k"` and `2hat"i" + 4hat"j" - 2hat"k"`


If `vec"a", vec"b", vec"c"` are three non-coplanar vectors represented by concurrent edges of a parallelepiped of volume 4 cubic units, find the value of `(vec"a" + vec"b") * (vec"b" xx vec"c") + (vec"b" + vec"c")* (vec"c" xx vec"a") + (vec"c" + vec"a") * (vec"a" xx vec"b")`


If θ is the angle between the unit vectors `bar"a"` and `bar"b"`, the `cos theta = theta/2` = ______.


Determine whether `bara and barb` are orthogonal, parallel or neither.

`bara = -3/5hati + 1/2hatj +1/3 hatk, barb = 5hati + 4hatj +3hatk`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×