Advertisements
Advertisements
प्रश्न
Find the volume of the parallelopiped whose coterminous edges are represented by the vector:
\[\vec{a} = 2 \hat{i} + 3 \hat{j} + 4 \hat{k} , \vec{b} =\hat{ i} + 2 \hat{j} - \hat{k} , \vec{c} = 3 \hat{i} - \hat{j} + 2 \hat{k}\]
उत्तर
Given:
\[ \vec{a} = 2 \hat{i} + 3 \hat{j} + 4 \hat{k} \]
\[ \vec{b} =\hat{ i} + 2 \hat{j} - \hat{k} \]
\[ \vec{c} = 3 \hat{i} - \hat{j} + 2 \hat{k} \]
\[\text{We know that the volume of a parallelopiped whose three adjacent edges are }\vec{a} , \vec{b} , \vec{c}\text{ is equal to } \left| \left[ \vec{a} \vec{b} \vec{c} \right] \right| . \]
Here,
\[\left[ \vec{a} \vec{b} \vec{c} \right] = \begin{vmatrix}2 & 3 & 4 \\ 1 & 2 & - 1 \\ 3 & - 1 & 2\end{vmatrix} = 2 \left( 4 - 1 \right) - 3\left( 2 + 3 \right) + 4\left( - 1 - 6 \right) = - 37\]
\[\text{Volume of the parallelopiped }= \left| \left[ \vec{a} \vec{b} \vec{c} \right] \right| = \left| - 37 \right| = 37 \text{cubic units }\]
APPEARS IN
संबंधित प्रश्न
Find λ, if the vectors `veca=hati+3hatj+hatk,vecb=2hati−hatj−hatk and vecc=λhatj+3hatk` are coplanar.
Find the volume of the parallelopiped whose coterminus edges are given by vectors
`2hati+3hatj-4hatk, 5hati+7hatj+5hatk and 4hati+5hatj-2hatk`
Find the value of λ, if four points with position vectors `3hati + 6hatj+9hatk`, `hati + 2hatj + 3hatk`,`2hati + 3hatj + hatk` and `4hati + 6hatj + lambdahatk` are coplanar.
Find \[\left[ \vec{a} \vec{b} \vec{c} \right]\] , when \[\vec{a} =\hat{ i} - 2 \hat{j} + 3 \hat{k} , \vec{b} = 2 \hat{i} + \hat{j} - \hat{k}\text{ and } \vec{c} = \hat{j} + \hat{k}\]
Find the value of λ so that the following vector is coplanar:
\[\vec{a} = 2 \hat{i} - \hat {j} + \hat {k} , \vec{b} = \hat {i} + 2 \hat {j} - 3 \hat {k} , \vec{c} = \lambda \hat {i} + \lambda \hat {j} + 5 \hat {k}\]
Find the value of λ so that the following vector is coplanar:
\[\vec{a} = \hat {i} + 3 \hat {j} , \vec{b} = 5 \hat {k} , \vec{c} = \lambda \hat {i} - \hat {j}\]
Show that the points A (−1, 4, −3), B (3, 2, −5), C (−3, 8, −5) and D (−3, 2, 1) are coplanar.
Prove that: \[\left( \vec{a} - \vec{b} \right) \cdot \left\{ \left( \vec{b} - \vec{c} \right) \times \left( \vec{c} - \vec{a} \right) \right\} = 0\]
\[\text {Let } \vec{a} = \hat {i} + \hat {j} + \hat {k} , \vec{b} = \hat {i} \text{and} \hat {c} = c_1 \hat{i} + c_2 \hat {j} + c_3 \hat {k} . \text {Then},\]
If c1 = 1 and c2 = 2, find c3 which makes \[\vec{a,} \vec{b} \text { and } \vec{c}\] coplanar.
Find λ for which the points A (3, 2, 1), B (4, λ, 5), C (4, 2, −2) and D (6, 5, −1) are coplanar.
Find the volume of the parallelopiped with its edges represented by the vectors \[\hat {i} + \hat {j} , \hat {i} + 2 \hat {j} \text { and } \hat {i} + \hat {j} + \pi k .\]
For any two vectors \[\vec{a} \text { and } \vec{b}\] of magnitudes 3 and 4 respectively, write the value of \[\left[ \vec{a} \vec{b} \vec{a} \times \vec{b} \right] + \left( \vec{a} \cdot \vec{b} \right)^2 .\]
If \[\left[ 3 \vec{a} + 7 \vec{b} \vec{c} \vec{d} \right] = \lambda\left[ \vec{a} \vec{c} \vec{d} \right] + \mu\left[ \vec{b} \vec{c} \vec{d} \right],\] then find the value of λ + μ.
If \[\vec{a,} \vec{b,} \vec{c}\] are non-coplanar vectors, then find the value of \[\frac{\vec{a} \cdot \left( \vec{b} \times \vec{c} \right)}{\left( \vec{c} \times \vec{a} \right) \cdot \vec{b}} + \frac{\vec{b} \cdot \left( \vec{a} \times \vec{c} \right)}{\vec{c} \cdot \left( \vec{a} \times \vec{b} \right)}\].
For any three vectors \[\vec{a,} \vec{b,} \vec{c}\] the expression \[\left( \vec{a} - \vec{b} \right) . \left\{ \left( \vec{b} - \vec{c} \right) \times \left( \vec{c} - \vec{a} \right) \right\}\] equals
If \[\left[ 2 \vec{a} + 4 \vec{b} \vec{c} \vec{d} \right] = \lambda\left[ \vec{a} \vec{c} \vec{d} \right] + \mu\left[ \vec{b} \vec{c} \vec{d} \right],\] then λ + μ =
For non-zero vectors \[\vec{a,} \vec{b} \text { and }\vec{c}\] the relation \[\left| \left( \vec{a} \times \vec{b} \right) \cdot \vec{c} \right| = \left| \vec{a} \right| \left| \vec{b} \right| \left| \vec{c} \right|\] holds good, if
Find the volume of the parallelopiped, if the coterminus edges are given by the vectors `2hat"i" + 5hat"j" -4 hat"k", 5hat"i" +7hat"j"+5 hat "k" , 4hat"i" +5hat"j" - 2 hat"k"`.
Determine where `bar"a"` and `bar"b"` are orthogonal, parallel or neithe:
`bar"a" = - 9hat"i" + 6hat"j" + 15hat"k"` , `bar"b" = 6hat"i" - 4hat"j" - 10hat"k"`.
Find the angle between the lines whose direction cosines l, m, n satisfy the equations 5l + m + 3n = 0 and 5mn − 2nl + 6lm = 0.
Find `bar"a".(bar"b" xx bar"c")` if `bar"a" = 3hat"i" - hat"j" + 4hat"k" , bar"b" = 2hat"i" + 3hat"j" - hat"k"` and `bar"c" = - 5hat"i" + 2hat"j" + 3hat"k"`
If `bar"u" = hat"i" - 2hat"j" + hat"k" , bar"v" = 3hat"i" + hat"k"` and `bar"w" = hat"j" - hat"k"` are given vectors, then find `(bar"u" + bar"w").[(bar"u" xx bar"v") xx (bar"v" xx bar"w")]`
Find the volume of the parallelepiped whose coterminous edges are represented by the vectors `- 6hat"i" + 14hat"j" + 10hat"k", 14hat"i" - 10hat"j" - 6hat"k"` and `2hat"i" + 4hat"j" - 2hat"k"`
Find the altitude of a parallelepiped determined by the vectors `vec"a" = - 2hat"i" + 5hat"j" + 3hat"k", vec"b" = hat"i" + 3hat"j" - 2hat"k"` and `vec"c" = - vec"i" + vec"j" + 4vec"k"` if the base is taken as the parallelogram determined by `vec"b"` and `vec"c"`
Let `vec"a", vec"b", vec"c"` be three non-zero vectors such that `vec"c"` is a unit vector perpendicular to both `vec"a"` and `vec"b"`. If the angle between `vec"a"` and `vec"b"` is `pi/6`, show that `[(vec"a", vec"b", vec"c")]^2 = 1/4|vec"a"|^2|vec"b"|^2`
If the volume of the tetrahedron formed by the coterminous edges `bar"a", bar"b" and bar"c"` is 5, then the volume of the parallelopiped formed by the coterminous edges `bar"a" xx bar"b", bar"b" xx bar"c" and bar"c" xx bar"a"` is
If the volume of tetrahedron whose vertices are A(0, 1, 2), B(2, -3, 0), C(1, 0, 2) and D(-2,-3,lambda) is `7/3` cu.units, then the value of λ is ______.
Find the volume of the parallelopiped whose coterminous edges are `2hati - 3hatj, hati + hatj - hatk` and `3hati - hatk`.
If `bar"u" = hat"i" - 2hat"j" + hat"k" , bar"v" = 3hat"i" + hat"k"` and `bar"w" = hat"j" - hat"k"` are given vectors, then find `[bar"u" xx bar"v" bar"u" xx bar"w" bar"v" xx bar"w"]`
Find the volume of the parallelopiped whose vertices are A (3, 2, −1), B (−2, 2, −3) C (3, 5, −2) and D (−2, 5, 4).
Determine whether `bb(bara and barb)` are orthogonal, parallel or neither.
`bara=-3/5hati+1/2hatj+1/3hatk,barb=5hati+4hatj+3hatk`
Determine whether `bara and barb` is orthogonal, parallel or neither.
`bara = -3/5hati + 1/2hatj + 1/3hatk, barb = 5hati + 4hatj + 3hatk`
Determine whether `\bb(bara and barb)` are orthogonal, parallel or neither.
`bara = -3/5 hati + 1/2 hatj + 1/3 hatk, barb = 5hati + 4hatj + 3hatk `