मराठी

The Value of [ → a − → B , → B − → C , → C − → a ] , Where - Mathematics

Advertisements
Advertisements

प्रश्न

The value of \[\left[ \vec{a} - \vec{b} , \vec{b} - \vec{c} , \vec{c} - \vec{a} \right], \text { where } \left| \vec{a} \right| = 1, \left| \vec{b} \right| = 5, \left| \vec{c} \right| = 3, \text { is }\]

पर्याय

  • 0

  • 1

  • 6

  • none of these

MCQ
बेरीज

उत्तर

We have 

\[\left[ \vec{a} - \vec{b} , \vec{b} - \vec{c} , \vec{c} - \vec{a} \right]\]

\[ = \left( \left( \vec{a} - \vec{b} \right) \times \left( \vec{b} - \vec{c} \right) \right) . \left( \vec{c} - \vec{a} \right) \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \left( \text { By definition of scalar triple product } \right)\]

\[ = \left( \left( \vec{a} - \vec{b} \right) \times \vec{b} - \left( \vec{a} - \vec{b} \right) \times \vec{c} \right) . \left( \vec{c} - \vec{a} \right) \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \]

\[ = \left( \vec{a} \times \vec{b} - \vec{b} \times \vec{b} - \vec{a} \times \vec{c} + \vec{b} \times \vec{c} \right) . \left( \vec{c} - \vec{a} \right) \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \]

\[ = \left( \vec{a} \times \vec{b} - 0 - \vec{a} \times \vec{c} + \vec{b} \times \vec{c} \right) . \left( \vec{c} - \vec{a} \right) \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \]

\[ = \left( \vec{a} \times \vec{b} \right) . \left( \vec{c} - \vec{a} \right) \hspace{0.167em} - \left( \vec{a} \times \vec{c} \right) . \left( \vec{c} - \vec{a} \right) \hspace{0.167em} + \left( \vec{b} \times \vec{c} \right) . \left( \vec{c} - \vec{a} \right) \hspace{0.167em} \]

\[ = \left( \vec{a} \times \vec{b} \right) . \vec{c} - \left( \vec{a} \times \vec{b} \right) . \vec{a} - \left( \vec{a} \times \vec{c} \right) . \vec{c} + \left( \vec{a} \times \vec{c} \right) . \vec{a} + \left( \vec{b} \times \vec{c} \right) . \vec{c} - \left( \vec{b} \times \vec{c} \right) . \vec{a} \]

\[ = \left[ \vec{a} \vec{b} \vec{c} \right] - \left[ \vec{a} \vec{b} \vec{a} \right] - \left[ \vec{a} \vec{c} \vec{c} \right] + \left[ \vec{a} \vec{c} \vec{a} \right] + \left[ \vec{b} \vec{c} \vec{c} \right] - \left[ \vec{b} \vec{c} \vec{a} \right]\]

\[ = \left[ \vec{a} \vec{b} \vec{c} \right] - 0 - 0 + 0 + 0 - \left[ \vec{a} \vec{b} \vec{c} \right] \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \left( \because \left[ \vec{a} \vec{b} \vec{c} \right] = \left[ \vec{b} \vec{c} \vec{a} \right] = \left[ \vec{c} \vec{a} \vec{b} \right] \right)\]

\[ = 0 \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 26: Scalar Triple Product - MCQ [पृष्ठ १८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 26 Scalar Triple Product
MCQ | Q 2 | पृष्ठ १८

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Prove that, for any three vector `veca,vecb,vecc [vec a+vec b,vec b+vec c,vecc+veca]=2[veca vecb vecc]`


Find λ, if the vectors `veca=hati+3hatj+hatk,vecb=2hati−hatj−hatk and vecc=λhatj+3hatk`  are coplanar.


If `bara=3hati-hatj+4hatk, barb=2hati+3hatj-hatk, barc=-5hati+2hatj+3hatk` then `bara.(barbxxbarc)=`

(A) 100

(B) 101

(C) 110

(D) 109


Find the volume of a tetrahedron whose vertices are A(−1, 2, 3), B(3, −2, 1), C(2, 1, 3) and D(−1, −2, 4).


Show that the four points A, B, C and D with position vectors `4hati + 5hatj + hatk`, `-hatj-hatk`, `3hati + 9hatj + 4hatk` and `4(-hati + hatj + hatk)` respectively are coplanar


Find the volume of the parallelopiped whose coterminous edges are represented by the vector:

\[\vec{a} = 2 \hat{i} + 3 \hat{j} + 4 \hat{k} , \vec{b} =\hat{ i} + 2 \hat{j} - \hat{k} , \vec{c} = 3 \hat{i} - \hat{j} + 2 \hat{k}\]


Find the volume of the parallelopiped whose coterminous edges are represented by the vector:

\[\vec{a} = 2 \hat{i} - 3 \hat{j} + 4 \hat{k} , \vec{b} = \hat{i} + 2 \hat{j} - \hat{k} , \vec{c} = 3 \hat{i} - \hat{j} - 2 \hat{k}\]


Find the volume of the parallelopiped whose coterminous edges are represented by the vector:

\[\vec{a} = 11 \hat{i} , \vec{b} = 2 \hat{j} , \vec{c} = 13 \hat{k}\]


Find the value of λ so that the following vector is coplanar:

\[\vec{a} = \hat{i} - \hat{j} + \hat{k} , \vec{b} = 2 \hat {i} + \hat {j} - \hat {k} , \vec{c} = \lambda\hat { i} - \hat {j} + \lambda \hat {k}\]


Find the value of λ for which the four points with position vectors

\[-\hat { j} - \hat {k} , 4 \hat {i} + 5 \hat {j} + \lambda \hat {k} , 3 \hat {i} + 9 \hat {j} + 4 \hat {k} \text { and } - 4 \hat {i} + 4 \hat {j} + 4 \hat{k}\]

 

Prove that: \[\left( \vec{a} - \vec{b} \right) \cdot \left\{ \left( \vec{b} - \vec{c} \right) \times \left( \vec{c} - \vec{a} \right) \right\} = 0\]


Write the value of \[\left[ \hat {i} + \hat {j} \ \hat {j} + \hat {k} \ \hat {k} + \hat {i} \right] .\]


Write the value of \[\left[ \hat {i} - \hat {j} \hat {j} - \hat {k} \hat {k} - \hat {i} \right] .\]


Find the values of 'a' for which the vectors

\[\vec{\alpha} = \hat {i} + 2 \hat {j} + \hat {k} , \vec{\beta} = a \hat {i} + \hat {j} + 2 \hat {k} \text { and } \vec{\gamma} = \hat {i} + 2 \hat {j} + a \hat { k }\] are coplanar.


If the vectors (sec2 A) \[\hat {i} + \hat {j} + \hat {k} , \hat {i} + \left( \sec^2 B \right) \hat {j} + \hat {k} , \hat {i} + \hat {j} + \left( \sec^2 C \right) \hat {k}\] are coplanar, then find the value of cosec2 A + cosec2 B + cosec2 C.


Let \[\vec{a} = a_1 \hat { i }+ a_2 \hat {j} + a_3 \hat {k} , \vec{b} = b_1 \hat {i} + b_2 \hat { j } + b_3 \hat { k} \text { and } \vec{c} = c_1 \hat { i } + c_2 \hat{j } + c_3\text {  k }\] be three non-zero vectors such that \[\vec{c}\] is a unit vector perpendicular to both \[\vec{a} \text { and } \vec{b}\]. If the angle between \[\vec{a} \text { and } \vec{b}\] is \[\frac{\pi}{6},\] , then

\[\begin{vmatrix}a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3\end{vmatrix}^2\] is equal to


If the vectors \[4 \hat { i} + 11 \hat {j} + m \hat {k} , 7 \hat { i} + 2 \hat { j} + 6 \hat {k} \text { and } \hat {i} + 5 \hat {j} + 4 \hat {k}\] are coplanar, then m =


\[\left( \vec{a} + \vec{b} \right) \cdot \left( \vec{b} + \vec{c} \right) \times \left( \vec{a} + \vec{b} + \vec{c} \right) =\]


Show that the vectors `hat (i) - 2 hat(j) + 3 hat (k), - 2 hat(i) + 3 hat(j) - 4 hat(k) " and " hat(i) - 3 hat(j) + 5 hat(k) ` are coplanar.


Determine where `bar"a"` and `bar"b"` are orthogonal, parallel or neithe:

`bar"a" = - 9hat"i" + 6hat"j" + 15hat"k"` , `bar"b" = 6hat"i" - 4hat"j" - 10hat"k"`.


Find the angle between the lines whose direction cosines l, m, n satisfy the equations 5l + m + 3n = 0 and 5mn − 2nl + 6lm = 0.


If the vectors `3hat"i" + 5hat"k", 4hat"i" + 2hat"j" - 3hat"k"` and `3hat"i" + hat"j" + 4hat"k"`  are the coterminus edges of the parallelopiped, then find the volume of the parallelopiped.


If `vec"a", vec"b", vec"c"` are three non-coplanar vectors represented by concurrent edges of a parallelepiped of volume 4 cubic units, find the value of `(vec"a" + vec"b") * (vec"b" xx vec"c") + (vec"b" + vec"c")* (vec"c" xx vec"a") + (vec"c" + vec"a") * (vec"a" xx vec"b")`


Find the altitude of a parallelepiped determined by the vectors `vec"a" = - 2hat"i" + 5hat"j" + 3hat"k", vec"b" = hat"i" + 3hat"j" - 2hat"k"` and `vec"c" = - vec"i" + vec"j" + 4vec"k"` if the base is taken as the parallelogram determined by `vec"b"` and `vec"c"`


Determine whether the three vectors `2hat"i" + 3hat"j" + hat"k", hat"i" - 2hat"j" + 2hat"k"` and `3hat"i" + hat"j" + 3hat"k"` are coplanar


Let `vec"a",  vec"b",  vec"c"` be three non-zero vectors such that `vec"c"` is a unit vector perpendicular to both `vec"a"` and `vec"b"`. If the angle between `vec"a"` and `vec"b"` is `pi/6`, show that `[(vec"a", vec"b", vec"c")]^2 = 1/4|vec"a"|^2|vec"b"|^2`


If θ is the angle between the unit vectors `bar"a"` and `bar"b"`, the `cos theta = theta/2` = ______.


If `veca = hati + hatj + hatk, veca.vecb` = 1 and `veca xx vecb = hatj - hatk`, then find `|vecb|`.


If the direction cosines of a line are `(1/c, 1/c, 1/c)` then ______.


Determine whether `bara and barb` are orthogonal, parallel or neither.

`bara = - 3/5 hati+ 1/2 hatj + 1/3 hatk , barb= 5hati + 4hatj + 3hatk`


If the points A(1, 2, 3), B(–1, 1, 2), C(2, 3, 4) and D(–1, x, 0) are coplanar find the value of x.


Find the volume of the parallelopiped whose vertices are A (3, 2, −1), B (−2, 2, −3) C (3, 5, −2) and D (−2, 5, 4). 


Determine whether `bara and barb` are orthogonal, parallel or neither.

`bara = -3/5hati + 1/2hatj +1/3 hatk, barb = 5hati + 4hatj +3hatk`


If a vector has direction angles 45ºand 60º find the third direction angle. 


If `u=hati -2hatj + hatk, barr=3hati + hatk and w=hatj, hatk`  are given vectors, then find `[baru + barw]. [(barw xx barr)xx(barr xx barw)]`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×