मराठी

If the Vectors 4 ^ I + 11 ^ J + M ^ K , 7 ^ I + 2 ^ J + 6 ^ K and ^ I + 5 ^ J + 4 ^ K Are Coplanar, Then M = - Mathematics

Advertisements
Advertisements

प्रश्न

If the vectors \[4 \hat { i} + 11 \hat {j} + m \hat {k} , 7 \hat { i} + 2 \hat { j} + 6 \hat {k} \text { and } \hat {i} + 5 \hat {j} + 4 \hat {k}\] are coplanar, then m =

पर्याय

  • 0

  • 38

  • -10

  • 10

MCQ
बेरीज

उत्तर

10

Let: 

\[ \vec{a} = 4 \hat {i} + 11 \hat {j} + m \hat {k} \]

\[ \vec{b} = 7 \hat {i} + 2 \hat {j} + 6 \hat {k} \]

\[ \vec{c} = \hat {i} + 5 \hat {j} + 4 \hat {k} \]

\[\text { We know that vectors }\vec{a} , \vec{b} \text { and }\vec{c} \text { are coplanar iff their scalar triple product is zero, i . e }. \left[ \vec{a} \vec{b} \vec{c} \right] = 0\]

\[ \Rightarrow \begin{vmatrix}4 & 11 & m \\ 7 & 2 & 6 \\ 1 & 5 & 4\end{vmatrix} = 0 \]

\[ \Rightarrow 4\left( 8 - 30 \right) - 11\left( 28 - 6 \right) + m\left( 35 - 2 \right) = 0\]

\[ \Rightarrow - 88 - 242 + 33m = 0\]

\[ \Rightarrow 33m = 330 \]

\[ \therefore m = 10\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 26: Scalar Triple Product - MCQ [पृष्ठ १९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 26 Scalar Triple Product
MCQ | Q 11 | पृष्ठ १९

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

If A, B, C, D are (1, 1, 1), (2, 1, 3), (3, 2, 2), (3, 3, 4) respectively, then find the volume of parallelopiped with AB, AC and AD as the concurrent edges.


Prove that the volume of a parallelopiped with coterminal edges as  ` bara ,bar b , barc `

Hence find the volume of the parallelopiped with coterminal edges  `bar i+barj, barj+bark `


If `bar c = 3bara- 2bar b ` Prove that `[bar a bar b barc]=0`


Prove that, for any three vector `veca,vecb,vecc [vec a+vec b,vec b+vec c,vecc+veca]=2[veca vecb vecc]`


Find the volume of the parallelopiped whose coterminus edges are given by vectors

`2hati+3hatj-4hatk, 5hati+7hatj+5hatk and 4hati+5hatj-2hatk`


if `bara = 3hati - 2hatj+7hatk`, `barb  = 5hati + hatj -2hatk`and `barc = hati + hatj - hatk` then find `bara.(barbxxbarc)`


Give a condition that three vectors \[\vec{a}\], \[\vec{b}\] and \[\vec{c}\]  form the three sides of a triangle. What are the other possibilities?


Find the volume of the parallelopiped whose coterminous edges are represented by the vector:

\[\vec{a} = 2 \hat{i} - 3 \hat{j} + 4 \hat{k} , \vec{b} = \hat{i} + 2 \hat{j} - \hat{k} , \vec{c} = 3 \hat{i} - \hat{j} - 2 \hat{k}\]


Show of the following triad of vector is coplanar:

\[\hat{a} = \hat{i} - 2 \hat {j} + 3 \hat {k} , \hat {b} = - 2 \hat {i} + 3 \hat {j} - 4 \hat { k}, \hat {c} = \hat { i} - 3 \hat { j} + 5 \hat { k }\]


Find the value of λ so that the following vector is coplanar:

\[\vec{a} = 2 \hat{i} - \hat {j} + \hat {k} , \vec{b} = \hat {i} + 2 \hat {j} - 3 \hat {k} , \vec{c} = \lambda \hat {i} + \lambda \hat {j} + 5 \hat {k}\]


\[\vec{a,} \vec{b} \text { and } \vec{c}\]  are the position vectors of points A, B and C respectively, prove that: \[\vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a}\]is a vector perpendicular to the plane of triangle ABC.

\[\text {Let } \vec{a} = \hat {i} + \hat {j} + \hat {k} , \vec{b} = \hat {i} \text{and} \hat {c} = c_1 \hat{i} + c_2 \hat {j} + c_3 \hat {k} . \text {Then},\]

If c1 = 1 and c2 = 2, find c3 which makes \[\vec{a,} \vec{b} \text { and } \vec{c}\] coplanar.


\[\text {Let } \vec{a} = \hat {i} + \hat {j} + \hat {k} , \vec{b} = \hat {i} \text{ and } \hat {c} = c_1 \hat{i} + c_2 \hat {j} + c_3 \hat {k} . \text {Then},\]

If c2 = −1 and c3 = 1, show that no value of c1 can make \[\vec{a,} \vec{b}\text { and } \vec{c}\] coplanar.


If \[\left[ 3 \vec{a} + 7 \vec{b} \vec{c} \vec{d} \right] = \lambda\left[ \vec{a} \vec{c} \vec{d} \right] + \mu\left[ \vec{b} \vec{c} \vec{d} \right],\] then find the value of λ + μ.


If \[\vec{a} = 2\hat{ i} - 3 \hat { j} + 5 \hat { k} , \vec{b} = 3 \hat {i} - 4 \hat {j} + 5 \hat {k} \text { and } \vec{c} = 5\hat { i } - 3 \hat {j}- 2 \hat{k},\] then the volume of the parallelopiped with conterminous edges \[\vec{a} + \vec{b,} \vec{b} + \vec{c,} \vec{c} + \vec{a}\] is 


Find the volume of the parallelopiped, if the coterminus edges are given by the vectors `2hat"i" + 5hat"j" -4 hat"k", 5hat"i" +7hat"j"+5 hat "k" , 4hat"i" +5hat"j" - 2 hat"k"`.                               


Determine where `bb(bara)` and `bb(barb)` are orthogonal, parallel or neither.

`bara = -3/5hati + 1/2hatj + 1/3hatk ,  barb = 5hati + 4hatj + 3hatk`


Prove by vector method, that the angle subtended on semicircle is a right angle.


If a line has the direction ratios 4, −12, 18, then find its direction cosines


Find the angle between the lines whose direction cosines l, m, n satisfy the equations 5l + m + 3n = 0 and 5mn − 2nl + 6lm = 0.


If `bar"u" = hat"i" - 2hat"j" + hat"k" , bar"v" = 3hat"i" + hat"k"` and `bar"w" = hat"j" - hat"k"` are given vectors, then find `(bar"u" + bar"w").[(bar"u" xx bar"v") xx (bar"v" xx bar"w")]`


Using properties of scalar triple product, prove that `[(bar"a" + bar"b",  bar"b" + bar"c",  bar"c" + bar"a")] = 2[(bar"a",  bar"b",  bar"c")]`.


If `vec"a" = hat"i" - 2hat"j" + 3hat"k", vec"b" = 2hat"i" + hat"j" - 2hat"k", vec"c" = 3hat"i" + 2hat"j" + hat"k"`, find `vec"a" * (vec"b" xx vec"c")`


Find the volume of the parallelepiped whose coterminous edges are represented by the vectors `- 6hat"i" + 14hat"j" + 10hat"k", 14hat"i" - 10hat"j" - 6hat"k"` and `2hat"i" + 4hat"j" - 2hat"k"`


Ler `vec"a" = hat"i" + hat"j" + hat"k", vec"b" = hat"i"` and `vec"c" = "c"_1hat"i" + "c"_2hat"j" + "c"_3hat"k"`. If c1 = 1 and c2 = 2. find c3 such that `vec"a", vec"b"` and `vec"c"` are coplanar


If `vec"a" = hat"i" - hat"k", vec"b" = xhat"i" + hat"j" + (1 - x)hat"k", vec"c" = yhat"i" + xhat"j" + (1 + x - y)hat"k"`, show that  `[(vec"a", vec"b", vec"c")]` depends on neither x nor y


Let `vec"a",  vec"b",  vec"c"` be three non-zero vectors such that `vec"c"` is a unit vector perpendicular to both `vec"a"` and `vec"b"`. If the angle between `vec"a"` and `vec"b"` is `pi/6`, show that `[(vec"a", vec"b", vec"c")]^2 = 1/4|vec"a"|^2|vec"b"|^2`


If the scalar triple product of the vectors `-3hat"i" + 7hat"j" - 3hat"k", 3hat"i" - 7hat"j" + lambdahat"k" and 7hat"i" - 5hat"j" - 5hat"j"` is 272 then λ = ______.


Let `bar"a", bar"b", bar"c"` be three vectors such that `bar"a" ≠ 0`, and `bar"a" xx bar"b" = 2bar"a" xx bar"c", |bar"a"| = |bar"c"| = 1, |bar"b"| = 4` and `|bar"b" xx bar"c"| = sqrt(15)`. If `bar"b" - 2bar"c" = lambdabar"a"`, then λ is equal to ______.


If `veca, vecb, vecc` are three non-coplanar vectors, then the value of `(veca.(vecb xx vecc))/((vecc xx veca).vecb) + (vecb.(veca xx vecc))/(vecc.(veca xx vecb))` is ______.


Prove that the volume of a tetrahedron with coterminus edges `overlinea, overlineb` and `overlinec` is `1/6[(overlinea, overlineb, overlinec)]`.

Hence, find the volume of tetrahedron whose coterminus edges are `overlinea = hati + 2hatj + 3hatk, overlineb = -hati + hatj + 2hatk` and `overlinec = 2hati + hatj + 4hatk`.


Determine whether `bara` and `barb` are orthogonal, parallel or neither.

`bara = - 3/5 hati + 1/2 hatj + 1/3 hatk, barb = 5hati + 4hatj + 3hatk`


Determine whether `bb(bara and barb)` are orthogonal, parallel or neither.

`bar a = -3/5hati + 1/2hatj + 1/3hatk, barb = 5hati + 4hatj + 3hatk`


Find the volume of the parallelopiped whose coterminous edges are `2hati - 3hatj, hati + hatj - hatk` and `3hati - hatk`.


Determine whether `bb(bara and barb)` are orthogonal, parallel or neither.

`bara=-3/5hati+1/2hatj+1/3hatk,barb=5hati+4hatj+3hatk`


Determine whether `bara and barb` are orthogonal, parallel or neither.

`bara = -3/5 hati + 1/2 hatj + 1/3 hatk,  barb = 5 hati + 4 hatj + 3 hatk`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×